Medical Record Contextual Parser Model

Description

This model, extracts medical record entities from clinical texts.

Copy S3 URI

How to use



document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")

medical_record_contextual_parser = ContextualParserModel.pretrained("med_parser","en","clinical/models")\
    .setInputCols(["sentence", "token"])\
    .setOutputCol("chunk_medical_record")

chunk_converter = ChunkConverter()\
    .setInputCols(["chunk_medical_record"])\
    .setOutputCol("ner_chunk")

parserPipeline = Pipeline(stages=[
        document_assembler,
        sentence_detector,
        tokenizer,
        medical_record_contextual_parser,
        chunk_converter
        ])

model = parserPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))

sample_text = """Month DD, YYYY
XYZ
RE: ABC
MEDICAL RECORD#: 12332
MRN: 1233567
MEDICAL RECORD#: 45678
MRN: 9876543
MEDICAL RECORD#: 11111
Dear Dr. XYZ:

I saw ABC back in Neuro-Oncology Clinic today."""

result = model.transform(spark.createDataFrame([[sample_text]]).toDF("text"))




document_assembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")

medical_record_contextual_parser = medical.ContextualParserModel.pretrained("med_parser","en","clinical/models")\
    .setInputCols(["sentence", "token"])\
    .setOutputCol("chunk_medical_record")

chunk_converter = medical.ChunkConverter()\
    .setInputCols(["chunk_medical_record"])\
    .setOutputCol("ner_chunk")

parserPipeline = nlp.Pipeline(stages=[
        document_assembler,
        sentence_detector,
        tokenizer,
        medical_record_contextual_parser,
        chunk_converter
        ])

model = parserPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))

sample_text = """Month DD, YYYY
XYZ
RE: ABC
MEDICAL RECORD#: 12332
MRN: 1233567
MEDICAL RECORD#: 45678
MRN: 9876543
MEDICAL RECORD#: 11111
Dear Dr. XYZ:

I saw ABC back in Neuro-Oncology Clinic today."""

result = model.transform(spark.createDataFrame([[sample_text]]).toDF("text"))



val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
    .setInputCols("document")
    .setOutputCol("sentence")

val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")

val medical_record_contextual_parser = ContextualParserModel.pretrained("med_parser","en","clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("chunk_medical_record")

val chunk_converter = new ChunkConverter()
    .setInputCols("chunk_medical_record")
    .setOutputCol("ner_chunk")

val parserPipeline = new Pipeline().setStages(Array(
        document_assembler,
        sentence_detector,
        tokenizer,
        medical_record_contextual_parser,
        chunk_converter
))


val sample_text = """Month DD, YYYY
XYZ
RE: ABC
MEDICAL RECORD#: 12332
MRN: 1233567
MEDICAL RECORD#: 45678
MRN: 9876543
MEDICAL RECORD#: 11111
Dear Dr. XYZ:

I saw ABC back in Neuro-Oncology Clinic today."""

val data = Seq(sample_text).toDF("text")

val results = parserPipeline.fit(data).transform(data)



Results



|   chunk |   begin |   end | label         |
|--------:|--------:|------:|:--------------|
|   12332 |      44 |    48 | MEDICALRECORD |
| 1233567 |      55 |    61 | MEDICALRECORD |
|   45678 |      80 |    84 | MEDICALRECORD |
| 9876543 |      91 |    97 | MEDICALRECORD |
|   11111 |     116 |   120 | MEDICALRECORD |



Model Information

Model Name: med_parser
Compatibility: Healthcare NLP 6.2.2+
License: Licensed
Edition: Official
Input Labels: [document, token_doc]
Output Labels: [entity_medicalrecord]
Language: en
Size: 4.4 KB
Case sensitive: false