Description
This model maps clinical entities to their corresponding ICD-10-CM codes. It provides fast and accurate clinical code mapping without requiring embeddings.
Predicted Entities
ICD-10-CM Codes
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols("sentence")\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
ner_model = MedicalNerModel.pretrained("ner_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = NerConverterInternal()\
.setInputCols("sentence", "token", "ner")\
.setOutputCol("ner_chunk")\
.setWhiteList(["PROBLEM"])
icd10cm_mapper = ChunkMapperModel.pretrained("icd10cm_mapper", "en", "clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("mappings")\
.setRels(["icd10cm_code"])
pipeline = Pipeline().setStages([
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner_model,
ner_converter,
icd10cm_mapper
])
text = """A 58-year-old male presents with sciatica and myalgia affecting his lower extremities. He has a history of polymyositis, currently managed with medication. The patient also reports glossitis and beriberi due to nutritional deficiency. Recently, he developed spondylolysis and experiences motion sickness during travel."""
data = spark.createDataFrame([[text]]).toDF("text")
result = pipeline.fit(data).transform(data)
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols("sentence")\
.setOutputCol("token")
word_embeddings = nlp.WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
ner_model = medical.NerModel.pretrained("ner_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = medical.NerConverter()\
.setInputCols("sentence", "token", "ner")\
.setOutputCol("ner_chunk")\
.setWhiteList(["PROBLEM"])
icd10cm_mapper = medical.ChunkMapperModel.pretrained("icd10cm_mapper", "en", "clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("mappings")\
.setRels(["icd10cm_code"])
pipeline = nlp.Pipeline().setStages([
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner_model,
ner_converter,
icd10cm_mapper
])
text = """A 58-year-old male presents with sciatica and myalgia affecting his lower extremities. He has a history of polymyositis, currently managed with medication. The patient also reports glossitis and beriberi due to nutritional deficiency. Recently, he developed spondylolysis and experiences motion sickness during travel."""
data = spark.createDataFrame([[text]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val wordEmbeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val nerModel = MedicalNerModel.pretrained("ner_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val nerConverter = new NerConverterInternal()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
.setWhiteList(Array("PROBLEM"))
val icd10cmMapper = ChunkMapperModel.pretrained("icd10cm_mapper", "en", "clinical/models")
.setInputCols(Array("ner_chunk"))
.setOutputCol("mappings")
.setRels(Array("icd10cm_code"))
val pipeline = new Pipeline().setStages(Array(
documentAssembler,
sentenceDetector,
tokenizer,
wordEmbeddings,
nerModel,
nerConverter,
icd10cmMapper
))
val data = Seq("""A 58-year-old male presents with sciatica and myalgia affecting his lower extremities. He has a history of polymyositis, currently managed with medication. The patient also reports glossitis and beriberi due to nutritional deficiency. Recently, he developed spondylolysis and experiences motion sickness during travel.""").toDF("text")
val result = pipeline.fit(data).transform(data)
Results
|ner_chunk |mapping_result|
|----------------------|--------------|
|sciatica |M54.3 |
|myalgia |M79.1 |
|polymyositis |M33.2 |
|glossitis |K14.0 |
|beriberi |E51.1 |
|nutritional deficiency|E63.9 |
|spondylolysis |M43.0 |
|motion sickness |T75.3 |
Model Information
| Model Name: | icd10cm_mapper |
| Compatibility: | Healthcare NLP 6.2.0+ |
| License: | Licensed |
| Edition: | Official |
| Input Labels: | [ner_chunk] |
| Output Labels: | [mappings] |
| Language: | en |
| Size: | 24.3 MB |