Medically Sound Suggestion Classifier (BioBERT) ONNX

Description

This model is a BioBERT based classifier is meant to identify whether the suggestion that is mentioned in the text is medically sound.

Predicted Entities

True, False

Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_vop_sound_medical_onnx", "en", "clinical/models")\
  .setInputCols(["document", "token"])\
  .setOutputCol("class")

pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier    
])

data = spark.createDataFrame(["I had a lung surgery for emphyema and after surgery my xray showing some recovery.",
                              "I was advised to put honey on a burned skin."], StringType()).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = nlp.Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_vop_sound_medical_onnx", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("classes")

pipeline = nlp.Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])

data = spark.createDataFrame(["I had a lung surgery for emphyema and after surgery my xray showing some recovery.",
                              "I was advised to put honey on a burned skin."], StringType()).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)

val document_assembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("document")) 
    .setOutputCol("token")

val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_vop_sound_medical_onnx", "en", "clinical/models")
  .setInputCols(Array("document","token"))
  .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val data = Seq(Array("I had a lung surgery for emphyema and after surgery my xray showing some recovery.",
                     "I was advised to put honey on a burned skin.")).toDF("text")

val model = pipeline.fit(data)
val result = model.transform(data)

Results


+----------------------------------------------------------------------------------+-------+
|text                                                                              |result |
+----------------------------------------------------------------------------------+-------+
|I had a lung surgery for emphyema and after surgery my xray showing some recovery.|[True] |
|I was advised to put honey on a burned skin.                                      |[False]|
+----------------------------------------------------------------------------------+-------+

Model Information

Model Name: bert_sequence_classifier_vop_sound_medical_onnx
Compatibility: Healthcare NLP 6.1.1+
License: Licensed
Edition: Official
Input Labels: [document, token]
Output Labels: [label]
Language: en
Size: 437.7 MB
Case sensitive: true