Self Report Classifier (BioBERT) ONNX

Description

This model is a BioBERT based classifier that can classify texts depending on if they are self-reported or if they refer to another person.

Predicted Entities

1st_Person, 3rd_Person

Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_vop_self_report_onnx", "en", "clinical/models")\
  .setInputCols(["document", "token"])\
  .setOutputCol("class")

pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier    
])

data = spark.createDataFrame(["My friend was treated for her skin cancer two years ago.",
                                  "I started with dysphagia in 2021, then, a few weeks later, felt weakness in my legs, followed by a severe diarrhea."], StringType()).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = nlp.Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_vop_self_report_onnx", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("classes")

pipeline = nlp.Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])

data = spark.createDataFrame(["My friend was treated for her skin cancer two years ago.",
                                  "I started with dysphagia in 2021, then, a few weeks later, felt weakness in my legs, followed by a severe diarrhea."], StringType()).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)

val document_assembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("document")) 
    .setOutputCol("token")

val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_vop_self_report_onnx", "en", "clinical/models")
  .setInputCols(Array("document","token"))
  .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val data = Seq(Array("My friend was treated for her skin cancer two years ago.",
                     "I started with dysphagia in 2021, then, a few weeks later, felt weakness in my legs, followed by a severe diarrhea.")).toDF("text")

val model = pipeline.fit(data)
val result = model.transform(data)

Results


+-------------------------------------------------------------------------------------------------------------------+------------+
|text                                                                                                               |result      |
+-------------------------------------------------------------------------------------------------------------------+------------+
|My friend was treated for her skin cancer two years ago.                                                           |[3rd_Person]|
|I started with dysphagia in 2021, then, a few weeks later, felt weakness in my legs, followed by a severe diarrhea.|[1st_Person]|
+-------------------------------------------------------------------------------------------------------------------+------------+

Model Information

Model Name: bert_sequence_classifier_vop_self_report_onnx
Compatibility: Healthcare NLP 6.1.1+
License: Licensed
Edition: Official
Input Labels: [document, token]
Output Labels: [label]
Language: en
Size: 437.7 MB
Case sensitive: true