PICO Classifier (BERT) ONNX

Description

Classify medical text according to the PICO framework.

This model is a BioBERT-based classifier.

Predicted Entities

CONCLUSIONS, DESIGN_SETTING, INTERVENTION, PARTICIPANTS, FINDINGS, MEASUREMENTS, AIMS

Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_pico_biobert_onnx", "en", "clinical/models")\
  .setInputCols(["document", "token"])\
  .setOutputCol("class")

pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier    
])

data = spark.createDataFrame([["To compare the results of recording enamel opacities using the TF and modified DDE indices."]]).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = nlp.Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_pico_biobert_onnx", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("classes")

pipeline = nlp.Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])

data = spark.createDataFrame([["To compare the results of recording enamel opacities using the TF and modified DDE indices."]]).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)

val document_assembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("document")) 
    .setOutputCol("token")

val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_pico_biobert_onnx", "en", "clinical/models")
  .setInputCols(Array("document","token"))
  .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))

val data = Seq("""To compare the results of recording enamel opacities using the TF and modified DDE indices.""").toDF("text")

val model = pipeline.fit(data)
val result = model.transform(data)

Results


+-------------------------------------------------------------------------------------------+------+
|text                                                                                       |result|
+-------------------------------------------------------------------------------------------+------+
|To compare the results of recording enamel opacities using the TF and modified DDE indices.|[AIMS]|
+-------------------------------------------------------------------------------------------+------+

Model Information

Model Name: bert_sequence_classifier_pico_biobert_onnx
Compatibility: Healthcare NLP 6.1.1+
License: Licensed
Edition: Official
Input Labels: [document, token]
Output Labels: [label]
Language: en
Size: 437.7 MB
Case sensitive: true