Description
This model is a BioBERT based classifier that can classify self-report the exact age into social media forum (Reddit) posts.
Predicted Entities
self_report_age, no_report
How to use
document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")
sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_exact_age_reddit_onnx", "en", "clinical/models")\
  .setInputCols(["document", "token"])\
  .setOutputCol("class")
pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier    
])
data = spark.createDataFrame(["Is it bad for a 19 year old it's been getting worser.",
                              "I was about 10. So not quite as young as you but young."], StringType()).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = nlp.Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")
sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_exact_age_reddit_onnx", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("classes")
pipeline = nlp.Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])
data = spark.createDataFrame(["Is it bad for a 19 year old it's been getting worser.",
                              "I was about 10. So not quite as young as you but young."], StringType()).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
val document_assembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document")) 
    .setOutputCol("token")
val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_exact_age_reddit_onnx", "en", "clinical/models")
  .setInputCols(Array("document","token"))
  .setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val data = Seq(
  "Is it bad for a 19 year old it's been getting worser.",
  "I was about 10. So not quite as young as you but young."
).toDF("text")
val model = pipeline.fit(data)
val result = model.transform(data)
Results
+-------------------------------------------------------+-----------------+
|text                                                   |result           |
+-------------------------------------------------------+-----------------+
|Is it bad for a 19 year old it's been getting worser.  |[self_report_age]|
|I was about 10. So not quite as young as you but young.|[no_report]      |
+-------------------------------------------------------+-----------------+
Model Information
| Model Name: | bert_sequence_classifier_exact_age_reddit_onnx | 
| Compatibility: | Healthcare NLP 6.1.1+ | 
| License: | Licensed | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [label] | 
| Language: | en | 
| Size: | 437.7 MB | 
| Case sensitive: | true |