Description
This model is trained with the BertForTokenClassification method from the transformers library and imported into Spark NLP. The model detects species entities in a biomedical text
Predicted Entities
I-SPECIES
, O
, B-SPECIES
, PAD
How to use
from sparknlp.base import DocumentAssembler
from sparknlp_jsl.annotator import SentenceDetectorDLModel, MedicalBertForTokenClassifier
from sparknlp.annotator import Tokenizer, NerConverter
from pyspark.ml import Pipeline
document_assembler = (
DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
)
sentenceDetector = (
SentenceDetectorDLModel.pretrained("sentence_detector_dl","xx")
.setInputCols(["document"])
.setOutputCol("sentence")
)
tokenizer = (
Tokenizer()
.setInputCols(["sentence"])
.setOutputCol("token")
)
token_classifier = (
MedicalBertForTokenClassifier.pretrained(
"bert_token_classifier_ner_linnaeus_species_onnx",
"en",
"clinical/models"
)
.setInputCols(["token", "sentence"])
.setOutputCol("ner")
.setCaseSensitive(True)
)
ner_converter = (
NerConverterInternal()
.setInputCols(["sentence", "token", "ner"])
.setOutputCol("ner_chunk")
)
pipeline = Pipeline(stages=[
document_assembler,
sentenceDetector,
tokenizer,
token_classifier,
ner_converter
])
test_sentence = "First identified in chicken, vigilin homologues have now been found in human (6), Xenopus laevis (7), Drosophila melanogaster (8) and Schizosaccharomyces pombe."
data = spark.createDataFrame([[test_sentence]]).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
from johnsnowlabs import nlp, medical
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl","xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
token_classifier = medical.BertForTokenClassifier.pretrained(
"bert_token_classifier_ner_linnaeus_species_onnx",
"en",
"clinical/models"
)\
.setInputCols(["token", "sentence"])\
.setOutputCol("ner")\
.setCaseSensitive(True)
ner_converter = medical.NerConverterInternal()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
pipeline = nlp.Pipeline(stages=[
document_assembler,
sentenceDetector,
tokenizer,
token_classifier,
ner_converter
])
test_sentence = "First identified in chicken, vigilin homologues have now been found in human (6), Xenopus laevis (7), Drosophila melanogaster (8) and Schizosaccharomyces pombe."
data = spark.createDataFrame([[test_sentence]]).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.annotators.Tokenizer
import com.johnsnowlabs.nlp.annotators.ner.NerConverter
import com.johnsnowlabs.nlp.annotators.classifier.dl.MedicalBertForTokenClassifier
import com.johnsnowlabs.nlp.annotators.sentence_detector_dl.SentenceDetectorDLApproach
import org.apache.spark.ml.Pipeline
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = new SentenceDetectorDLModel()
.pretrained("sentence_detector_dl","xx")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = MedicalBertForTokenClassifier
.pretrained("bert_token_classifier_ner_linnaeus_species_onnx", "en", "clinical/models")
.setInputCols(Array("token", "document"))
.setOutputCol("ner")
.setCaseSensitive(true)
val nerConverter = new NerConverterInternal()
.setInputCols(Array("document", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline()
.setStages(Array(
documentAssembler,
sentenceDetector,
tokenizer,
tokenClassifier,
nerConverter
))
val testSentence = "First identified in chicken, vigilin homologues have now been found in human (6), Xenopus laevis (7), Drosophila melanogaster (8) and Schizosaccharomyces pombe."
val data = Seq(testSentence).toDF("text")
val model = pipeline.fit(data)
val result = model.transform(data)
Results
+-------------------------+-------+
|text |entity |
+-------------------------+-------+
|chicken |SPECIES|
|human |SPECIES|
|Xenopus laevis |SPECIES|
|Drosophila melanogaster |SPECIES|
|Schizosaccharomyces pombe|SPECIES|
+-------------------------+-------+
Model Information
Model Name: | bert_token_classifier_ner_linnaeus_species_onnx |
Compatibility: | Healthcare NLP 6.1.1+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 403.7 MB |
Case sensitive: | true |
Max sentence length: | 128 |