Description
This model extracts biological and genetics terms in cancer-related texts using pre-trained NER model. This model is trained with the BertForTokenClassification method from the transformers library and imported into Spark NLP.
Predicted Entities
B-Developing_anatomical_structure, B-Cellular_component, B-Pathological_formation, I-Organism_substance, I-Amino_acid, B-Cancer, I-Simple_chemical, B-Simple_chemical, B-Tissue, I-Anatomical_system, B-Organism_substance, O, B-Organism, I-Immaterial_anatomical_entity, B-Organ, B-Gene_or_gene_product, I-Tissue, I-Organism_subdivision, I-Developing_anatomical_structure, I-Cellular_component, B-Organism_subdivision, B-Cell, I-Cancer, I-Gene_or_gene_product, I-Organism, B-Multi-tissue_structure, B-Anatomical_system, I-Pathological_formation, B-Immaterial_anatomical_entity, I-Cell, I-Organ, B-Amino_acid, I-Multi-tissue_structure, PAD
How to use
from sparknlp.base import DocumentAssembler
from sparknlp_jsl.annotator import MedicalBertForTokenClassifier
from sparknlp.annotator import Tokenizer, NerConverter
from pyspark.ml import Pipeline
document_assembler = (
DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
)
tokenizer = (
Tokenizer()
.setInputCols(["document"])
.setOutputCol("token")
)
token_classifier = (
MedicalBertForTokenClassifier.pretrained(
"bert_token_classifier_ner_bionlp_onnx",
"en",
"clinical/models"
)
.setInputCols(["token", "document"])
.setOutputCol("ner")
.setCaseSensitive(True)
)
ner_converter = (
NerConverterInternal()
.setInputCols(["document", "token", "ner"])
.setOutputCol("ner_chunk")
)
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
token_classifier,
ner_converter
])
test_sentence = "Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay."
data = spark.createDataFrame([[test_sentence]]).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
from johnsnowlabs import nlp, medical
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
tokenizer = nlp.Tokenizer()\
.setInputCols(["document"])\
.setOutputCol("token")
token_classifier = medical.BertForTokenClassifier.pretrained(
"bert_token_classifier_ner_bionlp_onnx",
"en",
"clinical/models"
)\
.setInputCols(["token", "document"])\
.setOutputCol("ner")\
.setCaseSensitive(True)
ner_converter = medical.NerConverterInternal()\
.setInputCols(["document", "token", "ner"])\
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
token_classifier,
ner_converter
])
test_sentence = "Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay."
data = spark.createDataFrame([[test_sentence]]).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.annotators.Tokenizer
import com.johnsnowlabs.nlp.annotators.ner.NerConverter
import com.johnsnowlabs.nlp.annotators.classifier.dl.MedicalBertForTokenClassifier
import org.apache.spark.ml.Pipeline
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = MedicalBertForTokenClassifier
.pretrained("bert_token_classifier_ner_bionlp_onnx", "en", "clinical/models")
.setInputCols(Array("token", "document"))
.setOutputCol("ner")
.setCaseSensitive(true)
val nerConverter = new NerConverterInternal()
.setInputCols(Array("document", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline()
.setStages(Array(
documentAssembler,
tokenizer,
tokenClassifier,
nerConverter
))
val testSentence = "Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay."
val data = Seq(testSentence).toDF("text")
val model = pipeline.fit(data)
val result = model.transform(data)
Results
+-------------------+----------------------+
|text |entity |
+-------------------+----------------------+
|erbA IRES |Organism |
|virus |Organism |
|erythroid cells |Cell |
|bone marrow |Multi-tissue_structure|
|blastoderm cultures|Cell |
|IRES virus |Organism |
|erbA IRES virus |Organism |
|blastoderm |Cell |
+-------------------+----------------------+
Model Information
| Model Name: | bert_token_classifier_ner_bionlp_onnx |
| Compatibility: | Healthcare NLP 6.1.1+ |
| License: | Licensed |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | en |
| Size: | 403.8 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |