Description
Assign assertion status to clinical entities.
Predicted Entities
absent
, present
, conditional
, associated_with_someone_else
, hypothetical
, possible
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text") \
.setOutputCol("document")
sentence_detector = SentenceDetector()\
.setInputCols("document")\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["document"])\
.setOutputCol("token")
embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")\
.setCaseSensitive(False)
ner = MedicalNerModel.pretrained("ner_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = NerConverterInternal()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")\
.setWhiteList(["PROBLEM"])
assertion_classifier = BertForAssertionClassification.pretrained("assertion_bert_classification_clinical_onnx", "en", "clinical/models")\
.setInputCols(["sentence", "ner_chunk"])\
.setOutputCol("assertion_class")\
.setCaseSensitive(False)
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner,
ner_converter,
assertion_classifier
])
# Generating example
text = """
Patient with severe fever and sore throat.
He shows no stomach pain and he maintained on an epidural and PCA for pain control.
He also became short of breath with climbing a flight of stairs.
After CT, lung tumor located at the right lower lobe. Father with Alzheimer.
"""
data = spark.createDataFrame([[text]]).toDF("text")
result = pipeline.fit(data).transform(data)
# Checking results
result.select("text", "assertion_class.result").show(truncate=False)
# Test classifier in Spark NLP pipeline
document_assembler = nlp.DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentence_detector = nlp.SentenceDetector()\
.setInputCols("document")\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer() \
.setInputCols(["sentence"]) \
.setOutputCol("token")
embeddings = nlp.WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")\
.setCaseSensitive(False)
ner = medical.NerModel.pretrained("ner_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = medical.NerConverterInternal()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")\
.setWhiteList(["PROBLEM"])
assertion_classifier = medical.BertForAssertionClassification.pretrained("assertion_bert_classification_clinical_onnx", "en", "clinical/models")\
.setInputCols(["sentence", "ner_chunk"])\
.setOutputCol("assertion_class")\
.setCaseSensitive(False)
pipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner,
ner_converter,
assertion_classifier
])
# Generating example
text = """
Patient with severe fever and sore throat.
He shows no stomach pain and he maintained on an epidural and PCA for pain control.
He also became short of breath with climbing a flight of stairs.
After CT, lung tumor located at the right lower lobe. Father with Alzheimer.
"""
data = spark.createDataFrame([[text]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = new SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentences")
.setOutputCol("token")
val embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(false)
val ner = MedicalNerModel.pretrained("ner_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = NerConverterInternal()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
.setWhiteList(Array("PROBLEM"))
val assertion_classifier = BertForAssertionClassification.pretrained("assertion_bert_classification_clinical_onnx", "en", "clinical/models")
.setInputCols(Array("document", "ner_chunk"))
.setOutputCol("assertion_class")
.setCaseSensitive(false)
val pipeline = new Pipeline().setStages(
Array(
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner,
ner_converter,
assertion_classifier
))
val text = """
Patient with severe fever and sore throat.
He shows no stomach pain and he maintained on an epidural and PCA for pain control.
He also became short of breath with climbing a flight of stairs.
After CT, lung tumor located at the right lower lobe. Father with Alzheimer.
"""
val data = Seq(text).toDF("text")
val result = pipeline.fit(data).transform(data)
Results
| | chunks | begin | end | entities | assertion | confidence |
|---:|:---------------------------------------------------------------|--------:|------:|:-----------|:------------|-------------:|
| 0 | acute distress | 43 | 56 | PROBLEM | Absent | 0.992191 |
| 1 | mild arcus senilis in the right | 191 | 221 | PROBLEM | Present | 0.99537 |
| 2 | jugular venous pressure distention | 380 | 413 | PROBLEM | Absent | 0.997313 |
| 3 | adenopathy in the cervical, supraclavicular, or axillary areas | 428 | 489 | PROBLEM | Absent | 0.996413 |
| 4 | tender | 514 | 519 | PROBLEM | Absent | 0.995015 |
| 5 | some fullness in the left upper quadrant | 535 | 574 | PROBLEM | Possible | 0.524748 |
| 6 | some edema | 660 | 669 | PROBLEM | Present | 0.987595 |
| 7 | cyanosis | 679 | 686 | PROBLEM | Absent | 0.996593 |
| 8 | clubbing | 692 | 699 | PROBLEM | Absent | 0.996629 |
Model Information
Model Name: | assertion_bert_classification_clinical_onnx |
Compatibility: | Healthcare NLP 6.0.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [document, ner_chunk] |
Output Labels: | [assertion_onnx] |
Language: | en |
Size: | 405.6 MB |
Case sensitive: | true |