Explain Clinical Document Generic Medications - Light

Description

This pipeline is designed to extract medication entities in generic form from texts.

2 NER models and a text matcher are used to extract the medication entities.

Copy S3 URI

How to use


from sparknlp.pretrained import PretrainedPipeline

ner_pipeline = PretrainedPipeline("explain_clinical_doc_medication_generic_light", "en", "clinical/models")

result = ner_pipeline.annotate("""In response, his doctor prescribed a regimen tailored to his conditions:
Thiamine 100 mg q.day , Folic acid 1 mg q.day , multivitamins q.day , Calcium carbonate plus Vitamin D 250 mg t.i.d. , Heparin 5000 units subcutaneously b.i.d. , Prilosec 20 mg q.day , Senna two tabs qhs.""")


import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val ner_pipeline = PretrainedPipeline("explain_clinical_doc_medication_generic_light", "en", "clinical/models")

val result = ner_pipeline.annotate("""In response, his doctor prescribed a regimen tailored to his conditions:
Thiamine 100 mg q.day , Folic acid 1 mg q.day , multivitamins q.day , Calcium carbonate plus Vitamin D 250 mg t.i.d. , Heparin 5000 units subcutaneously b.i.d. , Prilosec 20 mg q.day , Senna two tabs qhs.""")

Results

|    | chunks                            |   begin |   end | entities   |
|---:|:----------------------------------|--------:|------:|:-----------|
|  0 | Thiamine 100 mg                   |      73 |    87 | DRUG       |
|  1 | q.day                             |      89 |    93 | FREQUENCY  |
|  2 | Folic acid 1 mg                   |      97 |   111 | DRUG       |
|  3 | q.day                             |     113 |   117 | FREQUENCY  |
|  4 | multivitamins                     |     121 |   133 | DRUG       |
|  5 | q.day                             |     135 |   139 | FREQUENCY  |
|  6 | Calcium carbonate                 |     143 |   159 | DRUG       |
|  7 | Vitamin D 250 mg                  |     166 |   181 | DRUG       |
|  8 | t.i.d                             |     183 |   187 | FREQUENCY  |
|  9 | Heparin 5000 units subcutaneously |     192 |   224 | DRUG       |
| 10 | b.i.d                             |     226 |   230 | FREQUENCY  |
| 11 | Prilosec 20 mg                    |     235 |   248 | DRUG       |
| 12 | q.day                             |     250 |   254 | FREQUENCY  |
| 13 | Senna two tabs                    |     258 |   271 | DRUG       |
| 14 | qhs                               |     273 |   275 | FREQUENCY  |

Model Information

Model Name: explain_clinical_doc_medication_generic_light
Type: pipeline
Compatibility: Healthcare NLP 6.0.2+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel
  • MedicalNerModel
  • NerConverterInternalModel
  • TextMatcherInternalModel
  • ChunkMergeModel