Pipeline for Extracting Clinical Entities Related to UMLS CUI (Drug & Substance) Codes

Description

This pipeline is designed to extract all entities mappable to UMLS CUI (Drug & Substance) codes.

Copy S3 URI

How to use


from sparknlp.pretrained import PretrainedPipeline

ner_pipeline = PretrainedPipeline("ner_umls_drug_substance_pipeline", "en", "clinical/models")

result = ner_pipeline.annotate("""The patient was given  metformin, lenvatinib and Magnesium hydroxide 100mg/1ml.""")


import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val ner_pipeline = PretrainedPipeline("ner_umls_drug_substance_pipeline", "en", "clinical/models")

val result = ner_pipeline.annotate("""The patient was given  metformin, lenvatinib and Magnesium hydroxide 100mg/1ml.""")

Results

|    | chunks                        |   begin |   end | entities   |
|---:|:------------------------------|--------:|------:|:-----------|
|  0 | metformin                     |      24 |    32 | DRUG       |
|  1 | lenvatinib                    |      35 |    44 | DRUG       |
|  2 | Magnesium hydroxide 100mg/1ml |      50 |    78 | DRUG       |

Model Information

Model Name: ner_umls_drug_substance_pipeline
Type: pipeline
Compatibility: Healthcare NLP 6.0.2+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • TextMatcherInternalModel
  • ChunkMergeModel