Description
This pipeline can be used to deidentify PHI information from medical texts. The PHI information will be masked and obfuscated in the resulting text.
The pipeline can mask and obfuscate LOCATION
, CONTACT
, PROFESSION
, NAME
, DATE
, AGE
, MEDICALRECORD
, ORGANIZATION
, HEALTHPLAN
, DOCTOR
, USERNAME
,
LOCATION-OTHER
, URL
, DEVICE
, CITY
, ZIP
, STATE
, PATIENT
, STREET
, PHONE
, HOSPITAL
, EMAIL
, IDNUM
, BIOID
, FAX
, LOCATION_OTHER
, DLN
,
SSN
, ACCOUNT
, PLATE
, VIN
, LICENSE
, IP
entities.
How to use
from sparknlp.pretrained import PretrainedPipeline
ner_deid_pipeline = PretrainedPipeline("ner_deid_docwise_benchmark_optimized", "en", "clinical/models")
zeroshot_partial_pipeline = PretrainedPipeline(("ner_deid_docwise_benchmark_optimized_zeroshot_partial", "en", "clinical/models")
text = """Dr. John Lee, from Royal Medical Clinic in Chicago, attended to the patient on 11/05/2024.
The patient’s medical record number is 56467890.
The patient, Emma Wilson, is 50 years old, her Contact number: 444-456-7890 ."""
samples_df = spark.createDataFrame([[text]]).toDF("text")
ner_result = ner_deid_pipeline.transform(samples_df).cache()
final_result = zeroshot_partial_pipeline.transform(ner_result)
final_result.selectExpr("text", "masked.result").show()
final_result.selectExpr("explode(final_ner_chunk) as ner_chunk")\
.selectExpr("ner_chunk.result as chunk",
"ner_chunk.begin as begin",
"ner_chunk.end as end",
"ner_chunk.metadata.entity as entity",
).show()
from sparknlp.pretrained import PretrainedPipeline
ner_deid_pipeline = nlp.PretrainedPipeline("ner_deid_docwise_benchmark_optimized", "en", "clinical/models")
zeroshot_partial_pipeline = nlp.PretrainedPipeline(("ner_deid_docwise_benchmark_optimized_zeroshot_partial", "en", "clinical/models")
text = """Dr. John Lee, from Royal Medical Clinic in Chicago, attended to the patient on 11/05/2024.
The patient’s medical record number is 56467890.
The patient, Emma Wilson, is 50 years old, her Contact number: 444-456-7890 ."""
samples_df = spark.createDataFrame([[text]]).toDF("text")
ner_result = ner_deid_pipeline.transform(samples_df).cache()
final_result = zeroshot_partial_pipeline.transform(ner_result)
final_result.selectExpr("text", "masked.result").show()
final_result.selectExpr("explode(final_ner_chunk) as ner_chunk")\
.selectExpr("ner_chunk.result as chunk",
"ner_chunk.begin as begin",
"ner_chunk.end as end",
"ner_chunk.metadata.entity as entity",
).show()
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val ner_deid_pipeline = PretrainedPipeline("ner_deid_docwise_benchmark_optimized", "en", "clinical/models")
val zeroshot_partial_pipeline = PretrainedPipeline(("ner_deid_docwise_benchmark_optimized_zeroshot_partial", "en", "clinical/models")
val text = """Dr. John Lee, from Royal Medical Clinic in Chicago, attended to the patient on 11/05/2024.
The patient’s medical record number is 56467890.
The patient, Emma Wilson, is 50 years old, her Contact number: 444-456-7890 ."""
val samples_df = Seq(text).toDF("text")
val ner_result = ner_deid_pipeline.transform(samples_df)
val final_result = zeroshot_partial_pipeline.transform(ner_result)
Results
| | chunk | begin | end | entity | ner_source |
|---:|:---------------------|--------:|------:|:---------|:---------------|
| 0 | John Lee | 4 | 11 | DOCTOR | zeroshot_chunk |
| 1 | Royal Medical Clinic | 19 | 38 | HOSPITAL | zeroshot_chunk |
| 2 | Chicago | 43 | 49 | CITY | zeroshot_chunk |
| 3 | 11/05/2024 | 79 | 88 | DATE | zeroshot_chunk |
| 4 | 56467890 | 130 | 137 | IDNUM | zeroshot_chunk |
| 5 | Emma Wilson | 153 | 163 | PATIENT | zeroshot_chunk |
| 6 | 50 years old | 169 | 180 | AGE | entity_age |
| 7 | 444-456-7890 | 203 | 214 | PHONE | entity_phone |
|index|text|result|
|---|---|---|
|0|Dr\. John Lee, from Royal Medical Clinic in Chicago, attended to the patient on 11/05/2024\.
The patient’s medical record number is 56467890\.
The patient, Emma Wilson, is 50 years old, her Contact number: 444-456-7890 \.|Dr\. \<DOCTOR\>, from \<HOSPITAL\> in \<CITY\>, attended to the patient on \<DATE\>\.
The patient’s medical record number is \<IDNUM\>\.
The patient, \<PATIENT\>, is \<AGE\>, her Contact number: \<PHONE\> \.|
Model Information
Model Name: | ner_deid_docwise_benchmark_optimized_zeroshot_partial |
Type: | pipeline |
Compatibility: | Healthcare NLP 6.0.2+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 712.9 MB |
Included Models
- PretrainedZeroShotNER
- NerConverterInternalModel
- ChunkMergeModel
- ChunkMergeModel
- LightDeIdentification