Extract Biomarkers and Their Results (Docwise)

Description

This model extracts mentions of biomarkers and biomarker results from oncology texts. During training, a doc-wise method was used. This method processes a CoNLL-formatted dataset into structured sections designed for enhanced contextual analysis in tasks like Named Entity Recognition.

Definitions of Predicted Entities:

  • Biomarker: Biological molecules that indicate the presence or absence of cancer, or the type of cancer (including oncogenes).
  • Biomarker_Result: Terms or values that are identified as the result of a biomarkers.

Predicted Entities

Biomarker, Biomarker_Result

Copy S3 URI

How to use


document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                

ner = MedicalNerModel.pretrained("ner_oncology_biomarker_docwise", "en", "clinical/models")\
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverterInternal() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")

pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter])

data = spark.createDataFrame([["""The results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%."""]]).toDF("text")

result = pipeline.fit(data).transform(data)


document_assembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = nlp.Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = nlp.WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                

ner = medical.NerModel.pretrained("ner_oncology_biomarker_docwise", "en", "clinical/models")\
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = medical.NerConverterInternal() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")

pipeline = nlp.Pipeline().setStages([document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter])

data = spark.createDataFrame([["""The results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%."""]]).toDF("text")

result = pipeline.fit(data).transform(data)


val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
    .setInputCols("document")
    .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_biomarker_docwise", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
    
val ner_converter = new NerConverterInternal()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")

        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter))

val data = Seq([["""The results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%."""]]).toDF("text")

val result = pipeline.fit(data).transform(data)

Results


+----------------------------------------+-----+---+----------------+
|chunk                                   |begin|end|ner_label       |
+----------------------------------------+-----+---+----------------+
|negative                                |70   |77 |Biomarker_Result|
|CK7                                     |83   |85 |Biomarker       |
|synaptophysin                           |88   |100|Biomarker       |
|Syn                                     |103  |105|Biomarker       |
|chromogranin A                          |109  |122|Biomarker       |
|CgA                                     |125  |127|Biomarker       |
|Muc5AC                                  |131  |136|Biomarker       |
|human epidermal growth factor receptor-2|139  |178|Biomarker       |
|HER2                                    |181  |184|Biomarker       |
|Muc6                                    |192  |195|Biomarker       |
|positive                                |198  |205|Biomarker_Result|
|CK20                                    |211  |214|Biomarker       |
|Muc1                                    |217  |220|Biomarker       |
|Muc2                                    |223  |226|Biomarker       |
|E-cadherin                              |229  |238|Biomarker       |
|p53                                     |245  |247|Biomarker       |
|Ki-67 index                             |254  |264|Biomarker       |
|87%.                                    |276  |279|Biomarker_Result|
+----------------------------------------+-----+---+----------------+

Model Information

Model Name: ner_oncology_biomarker_docwise
Compatibility: Healthcare NLP 5.5.1+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 2.8 MB

Benchmarking


           label  precision    recall  f1-score   support
       Biomarker       0.93      0.92      0.92      3278
Biomarker_Result       0.88      0.83      0.86      2203
       micro-avg       0.91      0.88      0.90      5481
       macro-avg       0.90      0.87      0.89      5481
    weighted-avg       0.91      0.88      0.90      5481