Description
This pretrained model maps UMLS codes to corresponding LOINC codes.
Predicted Entities
loinc_code
How to use
document_assembler = DocumentAssembler()\
.setInputCol('text')\
.setOutputCol('doc')
chunkAssembler = Doc2Chunk()\
.setInputCols("doc")\
.setOutputCol("umls_code")
chunkerMapper = ChunkMapperModel.pretrained("umls_loinc_mapper", "en", "clinical/models")\
.setInputCols(["umls_code"])\
.setOutputCol("mappings")
mapper_pipeline = Pipeline(stages=[
document_assembler,
chunkAssembler,
chunkerMapper
])
data = spark.createDataFrame([["C0000530"],["C0000726"],["C0000343"],["C0000714"]]).toDF("text")
result = mapper_pipeline.fit(data).transform(data)
document_assembler = nlp.DocumentAssembler()\
.setInputCol('text')\
.setOutputCol('doc')
chunkAssembler = nlp.Doc2Chunk()\
.setInputCols("doc")\
.setOutputCol("umls_code")
chunkerMapper = medical.ChunkMapperModel.pretrained("umls_loinc_mapper", "en", "clinical/models")\
.setInputCols(["umls_code"])\
.setOutputCol("mappings")
mapper_pipeline = nlp.Pipeline(stages=[
document_assembler,
chunkAssembler,
chunkerMapper
])
data = spark.createDataFrame([["C0000530"],["C0000726"],["C0000343"],["C0000714"]]).toDF("text")
result = mapper_pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val chunk_assembler = new Doc2Chunk()
.setInputCols("document")
.setOutputCol("umls_code")
val chunkerMapper = ChunkMapperModel
.pretrained("umls_loinc_mapper", "en", "clinical/models")
.setInputCols(Array("umls_code"))
.setOutputCol("mappings")
val mapper_pipeline = Pipeline().setStages(Array(
document_assembler,
chunk_assembler,
chunkerMapper))
val data = Seq("C0000530","C0000726","C0000343","C0000714").toDF("text")
val result = mapper_pipeline.fit(data).transform(data)
Results
+---------+----------+
|umls_code|loinc_code|
+---------+----------+
|C0000530 |LP15305-3 |
|C0000726 |LP234820-1|
|C0000343 |LP40352-4 |
|C0000714 |LP101132-1|
+---------+----------+
Model Information
Model Name: | umls_loinc_mapper |
Compatibility: | Healthcare NLP 5.5.1+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 3.4 MB |
References
Trained on concepts from LOINC for the 2024AB release of the Unified Medical Language System® (UMLS) Knowledge Sources: https://www.nlm.nih.gov/research/umls/index.html