Description
This pretrained model maps CPT codes to corresponding UMLS codes.
Predicted Entities
umls_code
How to use
document_assembler = DocumentAssembler()\
.setInputCol('text')\
.setOutputCol('document')
chunk_assembler = Doc2Chunk()\
.setInputCols(['document'])\
.setOutputCol('cpt_code')
mapperModel = ChunkMapperModel.load("cpt_umls_mapper")\
.setInputCols(["cpt_code"])\
.setOutputCol("mappings")
mapper_pipeline = Pipeline(stages=[
document_assembler,
chunk_assembler,
mapperModel
])
data = spark.createDataFrame([["2016F"],["48155"],["64823"],["4500F"]]).toDF("text")
result = mapper_pipeline.fit(data).transform(data)
document_assembler = nlp.DocumentAssembler()\
.setInputCol('text')\
.setOutputCol('document')
chunk_assembler = medical.Doc2Chunk()\
.setInputCols(['document'])\
.setOutputCol('cpt_code')
mapperModel = medical.ChunkMapperModel.load("cpt_umls_mapper")\
.setInputCols(["cpt_code"])\
.setOutputCol("mappings")
mapper_pipeline = nlp.Pipeline(stages=[
document_assembler,
chunk_assembler,
mapperModel
])
data = spark.createDataFrame([["2016F"],["48155"],["64823"],["4500F"]]).toDF("text")
result = mapper_pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val chunk_assembler = new Doc2Chunk()
.setInputCols("document")
.setOutputCol("cpt_code")
val chunkerMapper = ChunkMapperModel
.load("cpt_umls_mapper")
.setInputCols(Array("cpt_code"))
.setOutputCol("mappings")
val mapper_pipeline = new Pipeline().setStages(Array(
document_assembler,
chunk_assembler,
chunkerMapper))
val data = Seq("2016F","48155","64823","4500F").toDF("text")
val result = mapper_pipeline.fit(data).transform(data)
Results
+--------+---------+
|cpt_code|umls_code|
+--------+---------+
|2016F |C3248275 |
|48155 |C0040511 |
|64823 |C0973430 |
|4500F |C3248301 |
+--------+---------+
Model Information
Model Name: | cpt_umls_mapper |
Compatibility: | Healthcare NLP 5.5.1+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 324.5 KB |
References
CPT resolver models are removed from the Models Hub due to license restrictions and can only be shared with the users who already have a valid CPT license. If you possess one and wish to use this model, kindly contact us at support@johnsnowlabs.com.
Trained on concepts from CPT for the 2024AB release of the Unified Medical Language System® (UMLS) Knowledge Sources: https://www.nlm.nih.gov/research/umls/index.html