Sentence Entity Resolver for UMLS CUI Codes (Disease or Syndrome)

Description

This model maps clinical entities to UMLS CUI codes. The complete dataset has 127 different categories, and this model is trained on the “Disease or Syndrome” category using ´sbiobert_base_cased_mli´ embeddings.

Predicted Entities

UMLS CUI codes for Disease or Syndorme

Open in Colab Copy S3 URI

How to use

documentAssembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical","en","clinical/models")\
    .setInputCols(["sentence","token"])\
    .setOutputCol("embeddings")

ner_model = MedicalNerModel.pretrained("ner_jsl", "en", "clinical/models")\
    .setInputCols(["sentence", "token", "embeddings"])\
    .setOutputCol("ner_jsl")

ner_model_converter = NerConverterInternal()\
    .setInputCols(["sentence", "token", "ner_jsl"])\
    .setOutputCol("ner_chunk")\
    .setWhiteList(['Disease_Syndrome_Disorder','Symptom'])\

chunk2doc = Chunk2Doc()\
    .setInputCols("ner_chunk")\
    .setOutputCol("ner_chunk_doc")

sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli",'en','clinical/models')\
    .setInputCols(["ner_chunk_doc"])\
    .setOutputCol("sbert_embeddings")\
    .setCaseSensitive(False)

resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_umls_disease_syndrome", "en", "clinical/models") \
    .setInputCols(["ner_chunk","sbert_embeddings"]) \
    .setOutputCol("resolution")\
    .setDistanceFunction("EUCLIDEAN")

umls_lp = Pipeline(stages=[
    documentAssembler,
    sentenceDetector,
    tokenizer,
    word_embeddings,
    ner_model,
    ner_model_converter,
    chunk2doc,
    sbert_embedder,
    resolver
])

data = spark.createDataFrame([["""A 35-year-old female with a past medical history significant for rheumatoid arthritis diagnosed 10 years ago, currently managed with methotrexate and prednisone, presented with a three-week history of progressively worsening joint pain and swelling, predominantly involving the wrists, knees, and ankles. She reported morning stiffness lasting over an hour. The patient denied any recent infections to the affected joints."""]]).toDF("text")

result = umls_lp.fit(data).transform(data)
documentAssembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentenceDetector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")

word_embeddings = nlp.WordEmbeddingsModel.pretrained("embeddings_clinical","en","clinical/models")\
    .setInputCols(["sentence","token"])\
    .setOutputCol("embeddings")

ner_model = medical.NerModel.pretrained("ner_jsl", "en", "clinical/models")\
    .setInputCols(["sentence", "token", "embeddings"])\
    .setOutputCol("ner_jsl")

ner_model_converter = medical.NerConverterInternal()\
    .setInputCols(["sentence", "token", "ner_jsl"])\
    .setOutputCol("ner_chunk")\
    .setWhiteList(['Disease_Syndrome_Disorder','Symptom'])\

chunk2doc = medical.Chunk2Doc()\
    .setInputCols("ner_chunk")\
    .setOutputCol("ner_chunk_doc")

sbert_embedder = nlp.BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli",'en','clinical/models')\
    .setInputCols(["ner_chunk_doc"])\
    .setOutputCol("sbert_embeddings")\
    .setCaseSensitive(False)

resolver = medical.SentenceEntityResolverModel.pretrained("sbiobertresolve_umls_disease_syndrome", "en", "clinical/models") \
    .setInputCols(["ner_chunk","sbert_embeddings"]) \
    .setOutputCol("resolution")\
    .setDistanceFunction("EUCLIDEAN")

umls_lp = nlp.Pipeline(stages=[
    documentAssembler,
    sentenceDetector,
    tokenizer,
    word_embeddings,
    ner_model,
    ner_model_converter,
    chunk2doc,
    sbert_embedder,
    resolver
])

data = spark.createDataFrame([["""A 35-year-old female with a past medical history significant for rheumatoid arthritis diagnosed 10 years ago, currently managed with methotrexate and prednisone, presented with a three-week history of progressively worsening joint pain and swelling, predominantly involving the wrists, knees, and ankles. She reported morning stiffness lasting over an hour. The patient denied any recent infections to the affected joints."""]]).toDF("text")

result = umls_lp.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
      .setInputCol("text")
      .setOutputCol("document")

val  sentence_detector = SentenceDetectorDLModel
      .pretrained("sentence_detector_dl_healthcare","en","clinical/models")
      .setInputCols(Array("document"))
      .setOutputCol("sentence")

val tokenizer = new Tokenizer()
      .setInputCols(Array("sentence"))
      .setOutputCol("token")

val word_embeddings = WordEmbeddingsModel
      .pretrained("embeddings_clinical", "en", "clinical/models")
      .setInputCols(Array("sentence", "token"))
      .setOutputCol("embeddings")

val ner_model = MedicalNerModel
      .pretrained("ner_jsl", "en", "clinical/models")
      .setInputCols(Array("sentence", "token", "embeddings"))
      .setOutputCol("ner_jsl")

val ner_model_converter = new NerConverterInternal()
      .setInputCols(Array("sentence", "token", "ner_jsl"))
      .setOutputCol("ner_chunk")
      .setWhiteList(Array("Disease_Syndrome_Disorder","Symptom"))

val chunk2doc = new Chunk2Doc()
      .setInputCols("ner_chunk")
      .setOutputCol("ner_chunk_doc")

val sbert_embedder = BertSentenceEmbeddings
      .pretrained("sbiobert_base_cased_mli", "en","clinical/models")
      .setInputCols(Array("ner_chunk_doc"))
      .setOutputCol("sbert_embeddings")
      .setCaseSensitive(False)
    
val resolver = SentenceEntityResolverModel
      .pretrained("sbiobertresolve_umls_disease_syndrome", "en", "clinical/models")
      .setInputCols(Array("ner_chunk_doc", "sbert_embeddings"))
      .setOutputCol("resolution")
      .setDistanceFunction("EUCLIDEAN")

val p_model = new Pipeline().setStages(Array(
    document_assembler,
    sentence_detector,
    tokenizer,
    word_embeddings,
    ner_model,
    ner_model_converter,
    chunk2doc,
    sbert_embedder,
    resolver))
    
val data = Seq("A 35-year-old female with a past medical history significant for rheumatoid arthritis diagnosed 10 years ago, currently managed with methotrexate and prednisone, presented with a three-week history of progressively worsening joint pain and swelling, predominantly involving the wrists, knees, and ankles. She reported morning stiffness lasting over an hour. The patient denied any recent infections to the affected joints.").toDF("text")  

val res = p_model.fit(data).transform(data)

Results

|    | ner_chunk            | entity                    | umls_code   | resolution             | all_k_results                                          | all_k_distances                              | all_k_cosine_distances                       | all_k_resolutions                                                                                                          |
|---:|:---------------------|:--------------------------|:------------|:-----------------------|:-------------------------------------------------------|:---------------------------------------------|:---------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
|  0 | rheumatoid arthritis | Disease_Syndrome_Disorder | C0003873    | rheumatoid arthritis   | C0003873:::C0857204:::C0035436:::C3842272:::C0241786...| 0.0000:::2.6543:::3.0397:::3.7683:::3.8342...| 0.0000:::0.0104:::0.0138:::0.0213:::0.0221...| rheumatoid arthritis:::rheumatoid arthropathy:::rheumatic arthritis:::rheumatoid arthritis - rheumatism:::anarthritic rh...|
|  1 | joint pain           | Symptom                   | C0162296    | multiple joint pain    | C0162296:::C0748680:::C0423690:::C0553642:::C5700083...| 3.4499:::5.1713:::5.2817:::5.5698:::5.7625...| 0.0172:::0.0387:::0.0406:::0.0448:::0.0481...| multiple joint pain:::shoulder pain exertional:::facet joint pain:::myofascial pain:::chronic pain:::period pain:::knee ...|
|  2 | swelling             | Symptom                   | C1411141    | wandering swelling     | C1411141:::C0037580:::C0281913:::C2938877:::C0497156...| 6.0648:::6.7036:::7.2996:::7.7305:::8.1315...| 0.0556:::0.0665:::0.0784:::0.0893:::0.0991...| wandering swelling:::soft tissue swelling:::muscles swelling:::limbal swelling:::swollen glands:::vascular edema:::calab...|
|  3 | stiffness            | Symptom                   | C1410087    | stiffness; spine       | C1410087:::C0014481:::C1861404:::C0277460:::C5554232...| 7.7399:::8.8854:::8.9370:::9.0310:::9.0316...| 0.0937:::0.1219:::0.1217:::0.1238:::0.1256...| stiffness; spine:::stiff sickness:::thumbs, stiff:::scaly leg:::stiff lung:::syndrome, stiff-person:::jt stiffness nec-h...|
|  4 | infections           | Disease_Syndrome_Disorder | C0851162    | infections             | C0851162:::C0578491:::C0009450:::C0747002:::C0858744...| 0.0000:::5.3371:::5.3800:::5.3940:::5.7704...| 0.0000:::0.0453:::0.0461:::0.0463:::0.0522...| infections:::infections site:::infection:::infections op:::induced infections:::infections underlying:::infections secon...|
|  5 | affected joints      | Symptom                   | C0022408    | joint dysfunction      | C0022408:::C0409271:::C5191746:::C0231586:::C4280547...| 6.8566:::7.4435:::7.5452:::7.6765:::7.9062...| 0.0689:::0.0824:::0.0844:::0.0851:::0.0937...| joint dysfunction:::derangement of multiple joints:::disorder of joint region:::abnormal joint movement:::infected joint...|

Model Information

Model Name: sbiobertresolve_umls_disease_syndrome
Compatibility: Healthcare NLP 5.5.1+
License: Licensed
Edition: Official
Input Labels: [sentence_embeddings]
Output Labels: [umls_code]
Language: en
Size: 1.3 GB
Case sensitive: false

References

Trained on ´2024AB´ UMLS dataset’s ´Disease or Syndrome´ category. https://www.nlm.nih.gov/research/umls/index.html