Clinical Deidentification Pipeline (clinical_deidentification_docwise_large_wip)

Description

This pipeline can be used to deidentify PHI information from medical texts. The PHI information will be masked and obfuscated in the resulting text. The pipeline can mask and obfuscate LOCATION, CONTACT, PROFESSION, NAME, DATE, AGE, MEDICALRECORD, ORGANIZATION, HEALTHPLAN, DOCTOR, USERNAME, LOCATION-OTHER, URL, DEVICE, CITY, ZIP, STATE, PATIENT, COUNTRY, STREET, PHONE, HOSPITAL, EMAIL, IDNUM, BIOID, FAX, LOCATION_OTHER, DLN, SSN, ACCOUNT, PLATE, VIN, LICENSE, IP entities.

Predicted Entities

NAME, DATE, IDNUM, ZIP, SSN, ACCOUNT, LICENSE, AGE, PHONE, COUNTRY, STATE, CITY, PLATE, VIN, MEDICALRECORD, EMAIL, URL, LOCATION, PROFESSION, CONTACT, PATIENT, HOSPITAL, ORGANIZATION, STREET, DOCTOR

Copy S3 URI

How to use


from sparknlp.pretrained import PretrainedPipeline

deid_pipeline = PretrainedPipeline("clinical_deidentification_docwise_large_wip", "en", "clinical/models")

text = """Dr. John Lee, from Royal Medical Clinic in Chicago,  attended to the patient on 11/05/2024.
The patient’s medical record number is 56467890.
The patient, Emma Wilson, is 50 years old,  her Contact number: 444-456-7890 ."""

deid_result = deid_pipeline.fullAnnotate(text)

print(''.join([i.result for i in deid_result['mask_entity']]))
print(''.join([i.result for i in deid_result['obfuscated']]))



from sparknlp.pretrained import PretrainedPipeline

deid_pipeline = nlp.PretrainedPipeline("clinical_deidentification_docwise_large_wip", "en", "clinical/models")

text = """Dr. John Lee, from Royal Medical Clinic in Chicago,  attended to the patient on 11/05/2024.
The patient’s medical record number is 56467890.
The patient, Emma Wilson, is 50 years old,  her Contact number: 444-456-7890 ."""

deid_result = deid_pipeline.fullAnnotate(text)

print(''.join([i.result for i in deid_result['mask_entity']]))
print(''.join([i.result for i in deid_result['obfuscated']]))



import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val deid_pipeline = PretrainedPipeline("clinical_deidentification_docwise_large_wip", "en", "clinical/models")

val text = """Dr. John Lee, from Royal Medical Clinic in Chicago,  attended to the patient on 11/05/2024.
The patient’s medical record number is 56467890.
The patient, Emma Wilson, is 50 years old,  her Contact number: 444-456-7890 ."""

val deid_result = deid_pipeline.fullAnnotate(text)

println(deid_result("mask_entity").map(_("result").toString).mkString(""))
println(deid_result("obfuscated").map(_("result").toString).mkString(""))


Results


Masked with entity labels
------------------------------
Dr. <DOCTOR>, from <HOSPITAL> in <CITY>,  attended to the patient on <DATE>.
The patient’s medical record number is <MEDICALRECORD>
patient, <PATIENT>, is <AGE> years old,  her Contact number: <PHONE> .

Obfuscated
------------------------------
Dr. Edwardo Graft, from MCBRIDE ORTHOPEDIC HOSPITAL in CLAMART,  attended to the patient on 14/06/2024.
The patient’s medical record number is 78295621.
The patient, Nathaneil Bakes, is 43 years old,  her Contact number: 308-657-8469 .

Model Information

Model Name: clinical_deidentification_docwise_large_wip
Type: pipeline
Compatibility: Healthcare NLP 5.5.1+
License: Licensed
Edition: Official
Language: en
Size: 3.4 GB

Included Models

  • DocumentAssembler
  • InternalDocumentSplitter
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel
  • MedicalNerModel
  • MedicalNerModel
  • MedicalNerModel
  • NerConverterInternalModel
  • NerConverterInternalModel
  • NerConverterInternalModel
  • PretrainedZeroShotNER
  • NerConverterInternalModel
  • ChunkMergeModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • TextMatcherInternalModel
  • TextMatcherInternalModel
  • TextMatcherInternalModel
  • ContextualParserModel
  • RegexMatcherInternalModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • RegexMatcherInternalModel
  • RegexMatcherInternalModel
  • RegexMatcherInternalModel
  • TextMatcherInternalModel
  • ChunkMergeModel
  • ChunkMergeModel
  • LightDeIdentification
  • LightDeIdentification