Description
Zero-shot Named Entity Recognition (NER) enables the identification of entities in text with minimal effort. By leveraging pre-trained language models and contextual understanding, zero-shot NER extends entity recognition capabilities to new domains and languages. While the model card includes default labels as examples, it is important to highlight that users are not limited to these labels.
The model is designed to support any set of entity labels, allowing users to adapt it to their specific use cases. For best results, it is recommended to use labels that are conceptually similar to the provided defaults.
Predicted Entities
Adenopathy
, Age
, Biomarker
, Biomarker_Result
, Body_Part
, Cancer_Dx
, Cancer_Surgery
,
Cycle_Count
, Cycle_Day
, Date
, Death_Entit
, Directio
, Dosage
, Duration
, Frequency
,
Gender
, Grade
, Histological_Type
, Imaging_Test
, Invasion
, Metastasis
, Oncogene
, Pathology_Test
,
Race_Ethnicity
, Radiation_Dose
, Relative_Date
, Response_To_Treatment
, Route
, Smoking_Status
,
Staging
, Therapy
, Tumor_Finding
, Tumor_Size
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
labels = ["Adenopathy", "Age","Biomarker","Biomarker_Result","Body_Part","Cancer_Dx","Cancer_Surgery",
"Cycle_Count","Cycle_Day","Date","Death_Entit","Directio","Dosage","Duration","Frequency",
"Gender","Grade","Histological_Type","Imaging_Test","Invasion","Metastasis","Oncogene","Pathology_Test",
"Race_Ethnicity","Radiation_Dose","Relative_Date","Response_To_Treatment","Route","Smoking_Status",
"Staging","Therapy","Tumor_Finding","Tumor_Size"]
pretrained_zero_shot_ner = PretrainedZeroShotNER().pretrained("zeroshot_ner_oncology_medium", "en", "clinical/models")\
.setInputCols("sentence", "token")\
.setOutputCol("ner")\
.setPredictionThreshold(0.5)\
.setLabels(labels)
ner_converter = NerConverterInternal()\
.setInputCols("sentence", "token", "ner")\
.setOutputCol("ner_chunk")
pipeline = Pipeline().setStages([
document_assembler,
sentence_detector,
tokenizer,
pretrained_zero_shot_ner,
ner_converter
])
data = spark.createDataFrame([["""Two years ago, the patient presented with a tumor in her left breast and adenopathies. She was diagnosed with invasive ductal carcinoma. Last week she was also found to have a lung metastasis."""]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = new SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
labels = Array("Adenopathy", "Age","Biomarker","Biomarker_Result","Body_Part","Cancer_Dx","Cancer_Surgery",
"Cycle_Count","Cycle_Day","Date","Death_Entit","Directio","Dosage","Duration","Frequency",
"Gender","Grade","Histological_Type","Imaging_Test","Invasion","Metastasis","Oncogene","Pathology_Test",
"Race_Ethnicity","Radiation_Dose","Relative_Date","Response_To_Treatment","Route","Smoking_Status",
"Staging","Therapy","Tumor_Finding","Tumor_Size")
val pretrained_zero_shot_ner = PretrainedZeroShotNER().pretrained("zeroshot_ner_oncology_medium", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
.setPredictionThreshold(0.5)
.setLabels(labels)
val ner_converter = new NerConverterInternal()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(
document_assembler,
sentence_detector,
tokenizer,
pretrained_zero_shot_ner,
ner_converter
))
val data = Seq([["""Two years ago, the patient presented with a tumor in her left breast and adenopathies. She was diagnosed with invasive ductal carcinoma. Last week she was also found to have a lung metastasis."""]]).toDF("text")
val result = pipeline.fit(data).transform(data)
Results
+-------------+-----+---+-----------------+----------+
|chunk |begin|end|ner_label |confidence|
+-------------+-----+---+-----------------+----------+
|Two years ago|1 |13 |Relative_Date |0.9153258 |
|tumor |45 |49 |Tumor_Finding |0.98980695|
|her |54 |56 |Gender |0.99849236|
|left |58 |61 |Direction |0.99010885|
|breast |63 |68 |Body_Part |0.97540295|
|adenopathies |74 |85 |Adenopathy |0.83176845|
|She |88 |90 |Gender |0.9997961 |
|invasive |111 |118|Invasion |0.93775606|
|ductal |120 |125|Histological_Type|0.90716 |
|carcinoma |127 |135|Cancer_Dx |0.946235 |
|Last week |138 |146|Relative_Date |0.8142577 |
|she |148 |150|Gender |0.99979 |
|lung |177 |180|Body_Part |0.98785883|
|metastasis |182 |191|Metastasis |0.99683565|
+-------------+-----+---+-----------------+----------+
Model Information
Model Name: | zeroshot_ner_oncology_medium |
Compatibility: | Healthcare NLP 5.5.1+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 711.2 MB |
Benchmarking
label precision recall f1-score support
Adenopathy 0.4527 0.7283 0.5583 92
Age 0.9583 0.9851 0.9715 1074
Biomarker 0.6589 0.8191 0.7303 1752
Biomarker_Result 0.4782 0.8450 0.6107 1632
Body_Part 0.6761 0.8969 0.7710 3540
Cancer_Dx 0.8778 0.7397 0.8029 1360
Cancer_Surgery 0.6859 0.7143 0.6998 749
Cycle_Count 0.8182 0.8229 0.8205 350
Cycle_Day 0.6464 0.7126 0.6779 254
Date 0.9743 0.9870 0.9806 921
Death_Entity 0.9189 0.9444 0.9315 36
Direction 0.7552 0.8412 0.7958 957
Dosage 0.7772 0.8164 0.7963 1111
Duration 0.6831 0.8566 0.7601 760
Frequency 0.7599 0.7310 0.7451 394
Gender 0.9807 0.9876 0.9841 1286
Grade 0.5390 0.6434 0.5866 258
Histological_Type 0.5192 0.6239 0.5668 476
Imaging_Test 0.8460 0.8503 0.8482 2145
Invasion 0.4538 0.8674 0.5958 181
Metastasis 0.9441 0.8579 0.8989 394
Oncogene 0.6986 0.5322 0.6041 466
Pathology_Test 0.7308 0.7082 0.7193 1100
Race_Ethnicity 0.8889 0.9492 0.9180 59
Radiation_Dose 0.5897 0.8156 0.6845 141
Relative_Date 0.8698 0.6558 0.7478 1284
Response_To_Treatment 0.4634 0.6412 0.5380 641
Route 0.5722 0.7055 0.6319 146
Smoking_Status 0.9200 0.8070 0.8598 57
Staging 0.5579 0.7130 0.6260 223
Therapy 0.7379 0.8733 0.7999 2012
Tumor_Finding 0.8662 0.8634 0.8648 1252
Tumor_Size 0.7529 0.9859 0.8538 1066
accuracy - - 0.8744 94819
macro avg 0.7354 0.8063 0.7618 94819
weighted avg 0.8907 0.8744 0.8792 94819