Description
This model maps medical entities to Logical Observation Identifiers Names and Codes(LOINC) codes using mpnet_embeddings_biolord_2023_c
embeddings.
It trained on the augmented version of the dataset which is used in previous LOINC resolver models. It also provides the official resolution of the codes within the brackets.
Predicted Entities
loinc_code
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetectorDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models") \
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("word_embeddings")
ner = MedicalNerModel.pretrained("ner_radiology", "en", "clinical/models") \
.setInputCols(["sentence", "token", "word_embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverterInternal()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")\
.setWhiteList(["Test"])
c2doc = Chunk2Doc()\
.setInputCols("ner_chunk")\
.setOutputCol("ner_chunk_doc")
biolord_embedding = MPNetEmbeddings.pretrained("mpnet_embeddings_biolord_2023_c", "en")\
.setInputCols(["ner_chunk_doc"])\
.setOutputCol("embeddings")\
.setCaseSensitive(False)
loinc_resolver = SentenceEntityResolverModel.pretrained("biolordresolve_loinc_augmented","en", "clinical/models")\
.setInputCols(["embeddings"]) \
.setOutputCol("loinc_code")\
.setDistanceFunction("EUCLIDEAN")
resolver_pipeline = Pipeline(
stages = [
document_assembler,
sentenceDetectorDL,
tokenizer,
word_embeddings,
ner,
ner_converter,
c2doc,
biolord_embedding,
loinc_resolver])
data = spark.createDataFrame([["""The patient is a 22-year-old female with a history of obesity. She has a Body mass index (BMI) of 33.5 kg/m2, aspartate aminotransferase 64, and alanine aminotransferase 126."""]]).toDF("text")
result = resolver_pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetectorDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")
.setInputCols(["document"])
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(["sentence"])
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("word_embeddings")
val ner = MedicalNerModel.pretrained("ner_radiology", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "word_embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverterInternal()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
.setWhiteList(["Test"])
val c2doc = new Chunk2Doc()
.setInputCols("ner_chunk")
.setOutputCol("ner_chunk_doc")
val biolord_embedding = MPNetEmbeddings.pretrained("mpnet_embeddings_biolord_2023_c", "en")
.setInputCols(["ner_chunk_doc"])
.setOutputCol("embeddings")
.setCaseSensitive(False)
val loinc_resolver = SentenceEntityResolverModel.pretrained("biolordresolve_loinc_augmented","en", "clinical/models")
.setInputCols(["embeddings"])
.setOutputCol("loinc_code")
.setDistanceFunction("EUCLIDEAN")
val resolver_pipeline = new Pipeline(
stages = [
document_assembler,
sentenceDetectorDL,
tokenizer,
word_embeddings,
ner,
ner_converter,
c2doc,
biolord_embedding,
loinc_resolver])
val data = Seq([["""The patient is a 22-year-old female with a history of obesity. She has a Body mass index (BMI) of 33.5 kg/m2, aspartate aminotransferase 64, and alanine aminotransferase 126."""]]).toDF("text")
val result = resolver_pipeline.fit(data).transform(data)
Results
+--------------------------+-----+---+---------+----------+-------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+
| chunk|begin|end|ner_label|loinc_code| description| resolutions| all_codes| aux_labels|
+--------------------------+-----+---+---------+----------+-------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+
| BMI| 90| 92| Test| 39156-5| BMI [Body mass index (BMI) [Ratio]]|BMI [Body mass index (BMI) [Ratio]]:::BMI Est [Body mass ...|39156-5:::89270-3:::94138-5:::59574-4:::LP415677-6:::5957...|Observation:::Observation:::Observation:::Observation:::M...|
|aspartate aminotransferase| 110|135| Test| LP15426-7|Aspartate aminotransferase [Aspartate aminotransferase]|Aspartate aminotransferase [Aspartate aminotransferase]::...|LP15426-7:::100739-2:::LP307348-5:::LP307326-1:::LP307433...|Observation:::Observation:::Observation:::Observation:::O...|
| alanine aminotransferase| 145|168| Test| LP15333-5| Alanine aminotransferase [Alanine aminotransferase]|Alanine aminotransferase [Alanine aminotransferase]:::L-a...|LP15333-5:::59245-1:::100738-4:::LP307326-1:::69383-8:::L...|Observation:::Observation:::Observation:::Observation:::O...|
+--------------------------+-----+---+---------+----------+-------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+
Model Information
Model Name: | biolordresolve_loinc_augmented |
Compatibility: | Healthcare NLP 5.5.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [mpnet_embeddings] |
Output Labels: | [loinc_code] |
Language: | en |
Size: | 1.1 GB |
Case sensitive: | false |
References
This model is trained with augmented version of the LOINC v2.78 dataset released in 2024-08-06.