Sentence Entity Resolver for Logical Observation Identifiers Names and Codes (LOINC) codes

Description

This model maps extracted medical entities to Logical Observation Identifiers Names and Codes (LOINC) codes using sbiobert_base_cased_mli Sentence Bert Embeddings. It also provides the official resolution of the codes within the brackets.

Predicted Entities

loinc_code

Copy S3 URI

How to use


document_assembler = DocumentAssembler()\
	.setInputCol("text")\
	.setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models") \
	.setInputCols(["document"]) \
	.setOutputCol("sentence")

tokenizer = Tokenizer()\
	.setInputCols(["sentence"])\
	.setOutputCol("token")

word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
	.setInputCols(["sentence", "token"])\
	.setOutputCol("embeddings")

ner_model = MedicalNerModel.pretrained("ner_jsl", "en", "clinical/models") \
	.setInputCols(["sentence", "token", "embeddings"]) \
	.setOutputCol("ner")

ner_converter = NerConverterInternal() \
 	  .setInputCols(["sentence", "token", "ner"]) \
	  .setOutputCol("ner_chunk")\
	  .setWhiteList(["Test"])

chunk2doc = Chunk2Doc()\
  	.setInputCols("ner_chunk")\
  	.setOutputCol("ner_chunk_doc")

sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")\
	  .setInputCols(["ner_chunk_doc"])\
	  .setOutputCol("sbert_embeddings")\
	  .setCaseSensitive(False)

resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc","en", "clinical/models") \
	  .setInputCols(["sbert_embeddings"]) \
	  .setOutputCol("resolution")\
	  .setDistanceFunction("EUCLIDEAN")


nlpPipeline = Pipeline(stages=[document_assembler,
                               sentence_detector,
                               tokenizer,
                               word_embeddings,
                               ner_model,
                               ner_converter,
                               chunk2doc,
                               sbert_embedder,
                               resolver])

data = spark.createDataFrame([["""A 65-year-old woman presents to the office with generalized fatigue for the last 4 months.
  She used to walk 1 mile each evening but now gets tired after 1-2 blocks. She has a history of Crohn disease and hypertension
  for which she receives appropriate medications. She is married and lives with her husband. She eats a balanced diet that
  includes chicken, fish, pork, fruits, and vegetables. She rarely drinks alcohol and denies tobacco use. A physical examination
  is unremarkable. Laboratory studies show the following: Hemoglobin: 9.8g/dL, Hematocrit: 32%, Mean Corpuscular Volume: 110 μm3"""]]).toDF("text")

result = nlpPipeline.fit(data).transform(data)


val document_assembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
  .setInputCols(Array("document"))
  .setOutputCol("sentence")

val tokenizer = new Tokenizer()
  .setInputCols(Array("sentence"))
  .setOutputCol("token")

val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical","en","clinical/models")
  .setInputCols(Array("sentence","token"))
  .setOutputCol("embeddings")

val ner_model = MedicalNerModel.pretrained("ner_jsl","en","clinical/models")
  .setInputCols(Array("sentence","token","embeddings"))
  .setOutputCol("ner")

val ner_converter = new NerConverterInternal()
  .setInputCols(Array("sentence","token","ner"))
  .setOutputCol("ner_chunk")
  .setWhiteList(Array("Test"))

val chunk2doc = new Chunk2Doc()
  .setInputCols("ner_chunk")
  .setOutputCol("ner_chunk_doc")

val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")
  .setInputCols(Array("ner_chunk_doc"))
  .setOutputCol("sbert_embeddings")
  .setCaseSensitive(false)

val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc","en","clinical/models")
  .setInputCols(Array("sbert_embeddings"))
  .setOutputCol("resolution")
  .setDistanceFunction("EUCLIDEAN")

val nlpPipeline = new Pipeline().setStages(Array(
    document_assembler,
    sentence_detector,
    tokenizer,
    word_embeddings,
    ner_model,
    ner_converter,
    chunk2doc,
    sbert_embedder,
    resolver))

val data = Seq([["""A 65-year-old woman presents to the office with generalized fatigue for the last 4 months.
  She used to walk 1 mile each evening but now gets tired after 1-2 blocks. She has a history of Crohn disease and hypertension
  for which she receives appropriate medications. She is married and lives with her husband. She eats a balanced diet that
  includes chicken, fish, pork, fruits, and vegetables. She rarely drinks alcohol and denies tobacco use. A physical examination
  is unremarkable. Laboratory studies show the following: Hemoglobin: 9.8g/dL, Hematocrit: 32%, Mean Corpuscular Volume: 110 μm3"""]]).toDF("text")

val result = nlpPipeline.fit(data).transform(data)

Results


+-----------------------+-----+---+---------+----------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+
|                  chunk|begin|end|ner_label|loinc_code|                                                 description|                                                 resolutions|                                                   all_codes|                                                  aux_labels|
+-----------------------+-----+---+---------+----------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+
|   physical examination|  490|509|     Test|   29544-4|                       Physical findings [Physical findings]|Physical findings [Physical findings]:::Physical exam by ...|29544-4:::55286-9:::11435-5:::11384-5:::29545-1:::8709-8:...|ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACT...|
|     Laboratory studies|  528|545|     Test|   26436-6|         Laboratory studies (set) [Laboratory studies (set)]|Laboratory studies (set) [Laboratory studies (set)]:::Lab...|26436-6:::52482-7:::11502-2:::34075-2:::100455-5:::85069-...|ACTIVE:::DISCOURAGED:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:...|
|             Hemoglobin|  567|576|     Test|   10346-5|Haemoglobin [Hemoglobin A [Units/volume] in Blood by Elec...|Haemoglobin [Hemoglobin A [Units/volume] in Blood by Elec...|10346-5:::15082-1:::11559-2:::2030-5:::34618-9:::38896-7:...|ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACT...|
|             Hematocrit|  590|599|     Test|   32354-3|Hematocrit [Volume Fraction] of Arterial blood [Hematocri...|Hematocrit [Volume Fraction] of Arterial blood [Hematocri...|32354-3:::20570-8:::11153-4:::13508-7:::104874-3:::42908-...|ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACT...|
|Mean Corpuscular Volume|  607|629|     Test|   30386-7|Erythrocyte mean corpuscular diameter [Length] [Erythrocy...|Erythrocyte mean corpuscular diameter [Length] [Erythrocy...|30386-7:::101864-7:::20161-6:::18033-1:::19853-1:::101150...|ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACT...|
+-----------------------+-----+---+---------+----------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+

Model Information

Model Name: sbiobertresolve_loinc
Compatibility: Healthcare NLP 5.5.0+
License: Licensed
Edition: Official
Input Labels: [sentence_embeddings]
Output Labels: [loinc_code]
Language: en
Size: 666.8 MB
Case sensitive: false

References

This model is trained with LOINC v2.78 dataset released in 2024-08-06.