JSL_MedS (LLM - q8)

Description

This LLM model is trained to perform Summarization and Q&A based on a given context.

Copy S3 URI

How to use


document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

medical_llm = MedicalLLM.pretrained("jsl_meds_q8_v1", "en", "clinical/models")\
    .setInputCols("document")\
    .setOutputCol("completions")\
    .setBatchSize(1)\
    .setNPredict(100)\
    .setUseChatTemplate(True)\
    .setTemperature(0)


pipeline = Pipeline(
    stages = [
        document_assembler,
        medical_llm
])

prompt = """
Based on the following text, what age group is most susceptible to breast cancer?

## Text:
The exact cause of breast cancer is unknown. However, several risk factors can increase your likelihood of developing breast cancer, such as:
- A personal or family history of breast cancer
- A genetic mutation, such as BRCA1 or BRCA2
- Exposure to radiation
- Age (most commonly occurring in women over 50)
- Early onset of menstruation or late menopause
- Obesity
- Hormonal factors, such as taking hormone replacement therapy
"""

data = spark.createDataFrame([[prompt]]).toDF("text")

results = pipeline.fit(data).transform(data)

results.select("completions").show(truncate=False)


val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val medical_llm = MedicalLLM.pretrained("jsl_meds_q8_v1", "en", "clinical/models")
    .setInputCols("document")
    .setOutputCol("completions")
    .setBatchSize(1)
    .setNPredict(100)
    .setUseChatTemplate(True)
    .setTemperature(0)


val pipeline = new Pipeline().setStages(Array(
    document_assembler,
    medical_llm
))

val  prompt = """
Based on the following text, what age group is most susceptible to breast cancer?

## Text:
The exact cause of breast cancer is unknown. However, several risk factors can increase your likelihood of developing breast cancer, such as:
- A personal or family history of breast cancer
- A genetic mutation, such as BRCA1 or BRCA2
- Exposure to radiation
- Age (most commonly occurring in women over 50)
- Early onset of menstruation or late menopause
- Obesity
- Hormonal factors, such as taking hormone replacement therapy
"""

val data = Seq(prompt).toDF("text")

val results = pipeline.fit(data).transform(data)

results.select("completions").show(truncate=False)

Results


The age group most susceptible to breast cancer, as mentioned in the text, is women over the age of 50.

Model Information

Model Name: jsl_meds_q8_v1
Compatibility: Healthcare NLP 5.5.0+
License: Licensed
Edition: Official
Language: en
Size: 3.9 GB

Benchmarking

We have generated a total of 400 questions, 100 from each category. These questions were labeled and reviewed by 3 physician annotators. % indicates the preference rate. Please see the more benchmark information here.

## Overall
| Model      | Factuality % | Clinical Relevancy % | Conciseness % |
|------------|--------------|----------------------|---------------|
| JSL-MedS   | 0.24         | 0.25                 | 0.38          |
| GPT4o      | 0.19         | 0.26                 | 0.27          |
| Neutral    | 0.43         | 0.36                 | 0.18          |
| None       | 0.14         | 0.13                 | 0.17          |
| Total      | 1.00         | 1.00                 | 1.00          |

## Summary 
| Model      | Factuality % | Clinical Relevancy % | Conciseness % |
|------------|--------------|----------------------|---------------|
| JSL-MedS   | 0.47         | 0.48                 | 0.42          |
| GPT4o      | 0.25         | 0.25                 | 0.25          |
| Neutral    | 0.22         | 0.22                 | 0.25          |
| None       | 0.07         | 0.05                 | 0.08          |
| Total      | 1.00         | 1.00                 | 1.00          |

## QA
| Model      | Factuality % | Clinical Relevancy % | Conciseness % |
|------------|--------------|----------------------|---------------|
| JSL-MedS   | 0.35         | 0.36                 | 0.42          |
| GPT4o      | 0.24         | 0.24                 | 0.29          |
| Neutral    | 0.33         | 0.33                 | 0.18          |
| None       | 0.09         | 0.07                 | 0.11          |
| Total      | 1.00         | 1.00                 | 1.00          |

## BioMedical
| Model      | Factuality % | Clinical Relevancy % | Conciseness % |
|------------|--------------|----------------------|---------------|
| JSL-MedS   | 0.33         | 0.24                 | 0.57          |
| GPT4o      | 0.12         | 0.08                 | 0.16          |
| Neutral    | 0.45         | 0.57                 | 0.16          |
| None       | 0.10         | 0.10                 | 0.10          |
| Total      | 1.00         | 1.00                 | 1.00          |

## OpenEnded
| Model      | Factuality % | Clinical Relevancy % | Conciseness % |
|------------|--------------|----------------------|---------------|
| JSL-MedS   | 0.35         | 0.30                 | 0.39          |
| GPT4o      | 0.30         | 0.33                 | 0.41          |
| Neutral    | 0.19         | 0.20                 | 0.02          |
| None       | 0.17         | 0.17                 | 0.19          |
| Total      | 1.00         | 1.00                 | 1.00          |