Description
This pretrained model maps MedDRA LLT (Lowest Level Term) codes to corresponding SNOMED codes.
Predicted Entities
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("ner_chunk")
sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("sbert_embeddings")\
.setCaseSensitive(False)
meddra_resolver = SentenceEntityResolverModel.load("sbiobertresolve_meddra_lowest_level_term") \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("meddra_llt_code")\
.setDistanceFunction("EUCLIDEAN")
resolver2chunk = Resolution2Chunk()\
.setInputCols(["meddra_llt_code"])\
.setOutputCol("meddra_llt_code2chunk")
chunkMapper = ChunkMapperModel.load('meddra_llt_snomed_mapper')\
.setInputCols(["meddra_llt_code2chunk"])\
.setOutputCol("mappings")\
.setRels(["snomed_code"])
pipeline = Pipeline(stages = [
documentAssembler,
sbert_embedder,
meddra_resolver,
resolver2chunk,
chunkMapper])
data = spark.createDataFrame([["Chronic renal insufficiency"], ["Gastritis"], ["Transient ischemic attack"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("ner_chunk")
val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")
.setInputCols(Array("ner_chunk"))
.setOutputCol("sbert_embeddings")
.setCaseSensitive(false)
val snomed_resolver = new SentenceEntityResolverModel.load("sbiobertresolve_meddra_lowest_level_term")
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("meddra_llt_code")
.setDistanceFunction("EUCLIDEAN")
val resolver2chunk = new Resolution2Chunk()
.setInputCols(Array("meddra_llt_code"))
.setOutputCol("meddra_llt_code2chunk")
val chunkMapper = new ChunkMapperModel.load("meddra_llt_snomed_mapper")
.setInputCols(Array("meddra_llt_code2chunk"))
.setOutputCol("mappings")
.setRels(Array("snomed_code"))
val newPipeline().setStages(Array(
documentAssembler,
sbert_embedder,
meddra_resolver,
resolver2chunk,
chunkMapper))
val data = Seq("Chronic renal insufficiency","Gastritis","Transient ischemic attack") .toDF("text")
val result = pipeline.fit(data).transform(data)
Results
+---------------------------+-----------+------------------------------------------------+
| chunk|meddra_code| snomed_code|
+---------------------------+-----------+------------------------------------------------+
|Chronic renal insufficiency| 10050441|723190009:Chronic renal insufficiency (disorder)|
| Gastritis| 10017853| 4556007:Gastritis (disorder)|
| Transient ischemic attack| 10072760| 266257000:Transient ischemic attack (disorder)|
+---------------------------+-----------+------------------------------------------------+
Model Information
Model Name: | meddra_llt_snomed_mapper |
Compatibility: | Healthcare NLP 5.4.1+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 173.9 KB |
References
This model is trained with the April 2024 release of SNOMED to MedDRA Map dataset.
To utilize this model, possession of a valid MedDRA license is requisite. If you possess one and wish to use this model, kindly contact us at support@johnsnowlabs.com.