Description
This pretrained model maps MedDRA-PT (Preferred Term) codes to corresponding ICD10 codes. Some of the MedDRA PT codes map to more than ICD-10 codes. You can find all the mapped ICD-10 codes in the all_k_resolutions
column in the metadata.
Predicted Entities
icd10 code
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("doc")
chunk_assembler = Doc2Chunk()\
.setInputCols(["doc"])\
.setOutputCol("ner_chunk")
mapperModel = ChunkMapperModel.load("meddra_pt_icd10_mapper")\
.setInputCols(["ner_chunk"])\
.setOutputCol("mappings")\
.setRels(["icd10_code"])
mapper_pipeline = Pipeline(stages=[
document_assembler,
chunk_assembler,
mapperModel
])
data = spark.createDataFrame([["10000153"], ["10000081"], ["10039085"]]).toDF("text")
mapper_model = mapper_pipeline.fit(data)
result = mapper_model.transform(data)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("doc")
val chunk_assembler = Doc2Chunk()
.setInputCols(Array("doc"))
.setOutputCol("ner_chunk")
val mapperModel = ChunkMapperModel.load("meddra_pt_icd10_mapper")
.setInputCols(Array("ner_chunk"))
.setOutputCol("mappings")
.setRels(Array("icd10_code"))
val mapper_pipeline = new Pipeline().setStages(Array(
document_assembler,
chunk_assembler,
mapperModel
))
val data = Seq("10000153", "10000081", "10039085").toDF("text")
val mapper_model = mapper_pipeline.fit(data)
val result = mapper_model.transform(data)
Results
+-----------+-------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------+
|meddra_code|icd10_code |all_k_resolutions |
+-----------+-------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------+
|10000153.0 |O62:Abnormalities of forces of labour|O62:Abnormalities of forces of labour:::O62.8:Other abnormalities of forces of labour:::O62.9:Abnormality of forces of labour, unspecified|
|10000081.0 |R10:Abdominal and pelvic pain |R10:Abdominal and pelvic pain:::R10.4:Other and unspecified abdominal pain |
|10039085.0 |J30:Vasomotor and allergic rhinitis |J30:Vasomotor and allergic rhinitis:::J30.3:Other allergic rhinitis:::J30.4:Allergic rhinitis, unspecified |
+-----------+-------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------+
Model Information
Model Name: | meddra_pt_icd10_mapper |
Compatibility: | Healthcare NLP 5.4.1+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 201.0 KB |
References
This model is trained with the June 2024 release of ICD-10 to MedDRA Map dataset.
To utilize this model, possession of a valid MedDRA license is requisite. If you possess one and wish to use this model, kindly contact us at support@johnsnowlabs.com.