Description
This model maps extracted medical entities to ICD-10-CM codes using sbiobert_base_cased_mli
Sentence Bert Embeddings and it supports 7-digit codes with Hierarchical Condition Categories (HCC) status. It has been updated by dropping the invalid codes that exist in the previous versions. In the result, look for the all_k_aux_labels
parameter in the metadata to get HCC status. The HCC status can be divided to get further information: billable status
, hcc status
, and hcc score
. For example if the result is 1||1||8
: the billable status is 1
, hcc status is 1
, and hcc score is 8
.
Predicted Entities
ICD-10-CM Codes
, HCC Scores
, Billable Status
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetectorDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("word_embeddings")
ner = MedicalNerModel.pretrained("ner_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token", "word_embeddings"])\
.setOutputCol("ner")\
ner_converter = NerConverterInternal()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")\
.setWhiteList(["PROBLEM"])
c2doc = Chunk2Doc()\
.setInputCols("ner_chunk")\
.setOutputCol("ner_chunk_doc")
sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")\
.setInputCols(["ner_chunk_doc"])\
.setOutputCol("sentence_embeddings")\
.setCaseSensitive(False)
icd_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_augmented_billable_hcc", "en", "clinical/models") \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")
resolver_pipeline = Pipeline(stages = [document_assembler,
sentenceDetectorDL,
tokenizer,
word_embeddings,
ner,
ner_converter,
c2doc,
sbert_embedder,
icd_resolver])
data = spark.createDataFrame([["""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus, associated with obesity with a body mass index (BMI) of 33.5 kg/m2, presented with a one-week history of polyuria, polydipsia, poor appetite, and vomiting. Two weeks prior to presentation, she was treated with a five-day course of amoxicillin for a respiratory tract infection."""]]).toDF("text")
result = resolver_pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence","token"))
.setOutputCol("embeddings")
val clinical_ner = MedicalNerModel.pretrained("ner_clinical", "en", "clinical/models")
.setInputCols(Array("sentence","token","embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentence","token","ner"))
.setOutputCol("ner_chunk")
.setWhiteList("PROBLEM")
val chunk2doc = new Chunk2Doc()
.setInputCols("ner_chunk")
.setOutputCol("ner_chunk_doc")
val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")
.setInputCols("ner_chunk_doc")
.setOutputCol("sbert_embeddings")
.setCaseSensitive(False)
val icd10_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_augmented_billable_hcc", "en", "clinical/models")
.setInputCols("sbert_embeddings")
.setOutputCol("resolution")
.setDistanceFunction("EUCLIDEAN")
val pipeline = new Pipeline().setStages(Array(document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
clinical_ner,
ner_converter,
chunk2doc,
sbert_embedder,
icd10_resolver))
val data = Seq("A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus, associated with obesity with a body mass index (BMI) of 33.5 kg/m2, presented with a one-week history of polyuria, polydipsia, poor appetite, and vomiting. Two weeks prior to presentation, she was treated with a five-day course of amoxicillin for a respiratory tract infection.").toDS().toDF("text")
val result = pipeline.fit(data).transform(data)
Results
+-------------------------------------+-------+----------+---------------------------------------------------------------------------+---------------------------------------------------------------------------+---------------------------------------------------------------------------+
| ner_chunk| entity|icd10_code| resolutions| all_codes| hcc_list|
+-------------------------------------+-------+----------+---------------------------------------------------------------------------+---------------------------------------------------------------------------+---------------------------------------------------------------------------+
| gestational diabetes mellitus|PROBLEM| O24.4|[gestational diabetes mellitus [gestational diabetes mellitus], gestatio...| [O24.4, O24.41, O24.43, Z86.32, Z87.5, O24.31, O24.11, O24.1, O24.81]|[0||0||0, 0||0||0, 0||0||0, 1||0||0, 0||0||0, 0||0||0, 0||0||0, 0||0||0,...|
|subsequent type two diabetes mellitus|PROBLEM| O24.11|[pre-existing type 2 diabetes mellitus [pre-existing type 2 diabetes mel...|[O24.11, E11.8, E11, E13.9, E11.9, E11.3, E11.44, Z86.3, Z86.39, E11.32,...|[0||0||0, 1||1||18, 0||0||0, 1||1||19, 1||1||19, 0||0||0, 1||1||18, 0||0...|
| obesity|PROBLEM| E66.9|[obesity [obesity, unspecified], abdominal obesity [other obesity], obes...|[E66.9, E66.8, Z68.41, Q13.0, E66, E66.01, Z86.39, E34.9, H35.50, Z83.49...|[1||0||0, 1||0||0, 1||1||22, 1||0||0, 0||0||0, 1||1||22, 1||0||0, 1||0||...|
| a body mass index|PROBLEM| Z68.41|[finding of body mass index [body mass index [bmi] 40.0-44.9, adult], ob...|[Z68.41, E66.9, R22.9, Z68.1, R22.3, R22.1, Z68, R22.2, R22.0, R41.89, M...|[1||1||22, 1||0||0, 1||0||0, 1||0||0, 0||0||0, 1||0||0, 0||0||0, 1||0||0...|
| polyuria|PROBLEM| R35|[polyuria [polyuria], nocturnal polyuria [nocturnal polyuria], polyuric ...|[R35, R35.81, R35.8, E23.2, R31, R35.0, R82.99, N40.1, E72.3, O04.8, R30...|[0||0||0, 1||0||0, 0||0||0, 1||1||23, 0||0||0, 1||0||0, 0||0||0, 1||0||0...|
| polydipsia|PROBLEM| R63.1|[polydipsia [polydipsia], psychogenic polydipsia [other impulse disorder...|[R63.1, F63.89, E23.2, F63.9, O40, G47.5, M79.89, R63.2, R06.1, H53.8, I...|[1||0||0, 1||0||0, 1||1||23, 1||0||0, 0||0||0, 0||0||0, 1||0||0, 1||0||0...|
| poor appetite|PROBLEM| R63.0|[poor appetite [anorexia], poor feeding [feeding problem of newborn, uns...|[R63.0, P92.9, R43.8, R43.2, E86, R19.6, F52.0, Z72.4, R06.89, Z76.89, R...|[1||0||0, 1||0||0, 1||0||0, 1||0||0, 0||0||0, 1||0||0, 1||0||0, 1||0||0,...|
| vomiting|PROBLEM| R11.1|[vomiting [vomiting], intermittent vomiting [nausea and vomiting], vomit...| [R11.1, R11, R11.10, G43.A1, P92.1, P92.09, G43.A, R11.13, R11.0]|[0||0||0, 0||0||0, 1||0||0, 1||0||0, 1||0||0, 1||0||0, 0||0||0, 1||0||0,...|
| a respiratory tract infection|PROBLEM| J98.8|[respiratory tract infection [other specified respiratory disorders], up...|[J98.8, J06.9, A49.9, J22, J20.9, Z59.3, T17, J04.10, Z13.83, J18.9, P28...|[1||0||0, 1||0||0, 1||0||0, 1||0||0, 1||0||0, 1||0||0, 0||0||0, 1||0||0,...|
+-------------------------------------+-------+----------+---------------------------------------------------------------------------+---------------------------------------------------------------------------+---------------------------------------------------------------------------+
Model Information
Model Name: | sbiobertresolve_icd10cm_augmented_billable_hcc |
Compatibility: | Healthcare NLP 5.4.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence_embeddings] |
Output Labels: | [icd10cm_code] |
Language: | en |
Size: | 1.3 GB |
Case sensitive: | false |
References
This model is trained with the 2025 version of ICD-10-CM dataset.