Medical Assertion MPNet Embedding

Description

This model has been trained on a curated list of clinical and biomedical datasets. It has been fine-tuned for Few-Shot Assertion but can also be utilized for other purposes, such as Classification and Retrieval-Augmented Generation (RAG).

Predicted Entities

Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

e5_embeddings = E5Embeddings.pretrained("e5_base_v2_embeddings_medical_assertion", "en", "clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("e5_embeddings")

pipeline = Pipeline().setStages([document_assembler, e5_embeddings])

text = [
    ["I feel a bit drowsy after taking an insulin."],
    ["Peter Parker is a nice guy and lives in New York"]
]

data = spark.createDataFrame(text).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val e5_embeddings = E5Embeddings.pretrained("e5_base_v2_embeddings_medical_assertion", "en", "clinical/models")
    .setInputCols(Array("document"))
    .setOutputCol("e5_embeddings")

val pipeline = new Pipeline().setStages(Array(document_assembler, e5_embeddings))

val result = pipeline.fit(data).transform(data)

Results

+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|                                                                                                                                                                                              embeddings|
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|[{sentence_embeddings, 0, 43, I feel a bit drowsy after taking an insulin., {sentence -> 0}, [0.10690122, 0.04766797, 0.028667178, 0.034236252, 0.021426275, -0.0070309048, 0.0345942, 0.023983167, -...|
|[{sentence_embeddings, 0, 47, Peter Parker is a nice guy and lives in New York, {sentence -> 0}, [0.08507857, 0.05005135, 0.025660643, 0.023364363, -2.0823967E-4, -0.0011765185, 0.02459659, 0.00737...|
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

Model Information

Model Name: e5_base_v2_embeddings_medical_assertion
Compatibility: Healthcare NLP 5.3.3+
License: Licensed
Edition: Official
Input Labels: [document]
Output Labels: [embeddings]
Language: en
Size: 393.1 MB
Case sensitive: false