Description
This pretrained model maps entities with their corresponding RxNorm codes.
Predicted Entities
RxNorm Codes
How to use
document_assembler = DocumentAssembler()\
.setInputCol('text')\
.setOutputCol('document')
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols("sentence")\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel\
.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
posology_ner_model = MedicalNerModel\
.pretrained("ner_posology_greedy", "en", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("posology_ner")
posology_ner_converter = NerConverterInternal()\
.setInputCols("sentence", "token", "posology_ner")\
.setOutputCol("ner_chunk")
chunkerMapper = ChunkMapperModel\
.pretrained("rxnorm_mapper", "en", "clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("mappings")\
.setRels(["rxnorm_code"])
mapper_pipeline = Pipeline().setStages([
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
posology_ner_model,
posology_ner_converter,
chunkerMapper])
test_data = spark.createDataFrame([["The patient was given Zyrtec 10 MG, Adapin 10 MG Oral Capsule, Septi-Soothe 0.5 Topical Spray"]]).toDF("text")
mapper_model = mapper_pipeline.fit(test_data)
result= mapper_model.transform(test_data)
Results
+------------------------------+-----------+
|ner_chunk |rxnorm_code|
+------------------------------+-----------+
|Zyrtec 10 MG |1011483 |
|Adapin 10 MG Oral Capsule |1000050 |
|Septi-Soothe 0.5 Topical Spray|1000046 |
+------------------------------+-----------+
Model Information
Model Name: | rxnorm_mapper |
Compatibility: | Healthcare NLP 5.3.3+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 10.5 MB |