Sentence Entity Resolver for UMLS CUI Codes (Drug & Substance)

Description

This model maps drug and substances to UMLS CUI codes. It is trained on ´2024AA´ release of the Unified Medical Language System (UMLS) dataset. The complete dataset has 127 different categories, and this model is trained on the “Clinical Drug”, “Pharmacologic Substance”, “Antibiotic”, and “Hazardous or Poisonous Substance” categories using ´sbiobert_base_cased_mli´ embeddings.

Predicted Entities

UMLS CUI codes for drug substances

Open in Colab Copy S3 URI

How to use

documentAssembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical","en","clinical/models")\
    .setInputCols(["sentence","token"])\
    .setOutputCol("embeddings")

ner_model = MedicalNerModel.pretrained("ner_posology_greedy","en","clinical/models")\
    .setInputCols(["sentence","token","embeddings"])\
    .setOutputCol("posology_ner")

ner_model_converter = NerConverterInternal()\
    .setInputCols(["sentence","token","posology_ner"])\
    .setOutputCol("posology_ner_chunk")\
    .setWhiteList(["DRUG"])

chunk2doc = Chunk2Doc()\
    .setInputCols("posology_ner_chunk")\
    .setOutputCol("ner_chunk_doc")

sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli",'en','clinical/models')\
    .setInputCols(["ner_chunk_doc"])\
    .setOutputCol("sbert_embeddings")\
    .setCaseSensitive(False)

resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_umls_drug_substance","en", "clinical/models") \
     .setInputCols(["sbert_embeddings"]) \
     .setOutputCol("resolution")\
     .setDistanceFunction("EUCLIDEAN")

pipeline = Pipeline(stages=[
    documentAssembler,
    sentenceDetector,
    tokenizer,
    word_embeddings,
    ner_model,
    ner_model_converter,
    chunk2doc,
    sbert_embedder,
    resolver
])


data = spark.createDataFrame([["She was immediately given hydrogen peroxide 30 mg to treat the infection on her leg, and has been advised Neosporin Cream for 5 days. She has a history of taking magnesium hydroxide 100mg/1ml and metformin 1000 mg."]]).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
      .setInputCol("text")
      .setOutputCol("document")

val sentence_detector = SentenceDetectorDLModel
      .pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
      .setInputCols(Array("document"))\
      .setOutputCol("sentence")

val tokenizer = new Tokenizer()
      .setInputCols("sentence")
      .setOutputCol("token")

val word_embeddings = WordEmbeddingsModel
      .pretrained("embeddings_clinical", "en", "clinical/models")
      .setInputCols(Array("sentence", "token"))
      .setOutputCol("embeddings")

val ner_model = MedicalNerModel.pretrained("ner_posology_greedy", "en", "clinical/models")
      .setInputCols(Array("sentence", "token", "embeddings"))
      .setOutputCol("posology_ner")

val ner_model_converter = new NerConverterInternal()
      .setInputCols(Array("sentence", "token", "posology_ner"))
      .setOutputCol("posology_ner_chunk")
      .setWhiteList(Array("DRUG"))

val chunk2doc = new Chunk2Doc()
      .setInputCols("posology_ner_chunk")
      .setOutputCol("ner_chunk_doc")

val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en","clinical/models")
      .setInputCols(Array("ner_chunk_doc"))
      .setOutputCol("sbert_embeddings")
      .setCaseSensitive(False)
    
val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_umls_drug_substance", "en", "clinical/models")
      .setInputCols(Array("sbert_embeddings"))
      .setOutputCol("resolution")
      .setDistanceFunction("EUCLIDEAN")

val p_model = new Pipeline().setStages(Array(
    document_assembler,
    sentence_detector,
    tokenizer,
    word_embeddings,
    ner_model,
    ner_model_converter,
    chunk2doc,
    sbert_embedder,
    resolver))
    
val data = Seq("She was immediately given hydrogen peroxide 30 mg to treat the infection on her leg, and has been advised Neosporin Cream for 5 days. She has a history of taking magnesium hydroxide 100mg/1ml and metformin 1000 mg.").toDF("text")  

val res = p_model.fit(data).transform(data)

Results

+-----------------------------+-----+---+------+---------+--------------------------+------------------------------------------------------------+------------------------------------------------------------+
|                    ner_chunk|begin|end|entity|umls_code|             resolved_text|                                               all_k_results|                                           all_k_resolutions|
+-----------------------------+-----+---+------+---------+--------------------------+------------------------------------------------------------+------------------------------------------------------------+
|      hydrogen peroxide 30 mg|   26| 48|  DRUG| C1126248|hydrogen peroxide 30 mg/ml|C1126248:::C0304655:::C1605252:::C0304656:::C1154260:::C2...|hydrogen peroxide 30 mg/ml:::hydrogen peroxide solution 3...|
|              Neosporin Cream|  107|121|  DRUG| C0132149|           neosporin cream|C0132149:::C0358174:::C0357999:::C0307085:::C0698810:::C0...|neosporin cream:::nystan cream:::nystadermal cream:::nupe...|
|magnesium hydroxide 100mg/1ml|  163|191|  DRUG| C1134402|magnesium hydroxide 100 mg|C1134402:::C1126785:::C4317023:::C4051486:::C4047137:::C1...|magnesium hydroxide 100 mg:::magnesium hydroxide 100 mg/m...|
|            metformin 1000 mg|  197|213|  DRUG| C0987664|         metformin 1000 mg|C0987664:::C2719784:::C0978482:::C2719786:::C4282269:::C2...|metformin 1000 mg:::metformin hydrochloride 1000 mg:::met...|
+-----------------------------+-----+---+------+---------+--------------------------+------------------------------------------------------------+------------------------------------------------------------+

Model Information

Model Name: sbiobertresolve_umls_drug_substance
Compatibility: Healthcare NLP 5.3.3+
License: Licensed
Edition: Official
Input Labels: [sentence_embeddings]
Output Labels: [umls_code]
Language: en
Size: 2.9 GB
Case sensitive: false

References

This model was trained on the ´Clinical Drug´ concept of the ´2024AA´ release of the Unified Medical Language System® (UMLS) Knowledge Sources: https://www.nlm.nih.gov/research/umls/index.html