Description
This is an Entity Resolution / Entity Linking model, which is able to provide Company Names given their Ticker / Trading Symbols. You can use any NER which extracts Tickersto then send the output to this Entity Linking model and get the Company Name.
Predicted Entities
How to use
documentAssembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("ner_chunk")
embeddings = nlp.BGEEmbeddings.pretrained("finance_bge_base_embeddings", "en", "finance/models")\
.setInputCols("ner_chunk") \
.setOutputCol("sentence_embeddings")
resolver = finance.SentenceEntityResolverModel.pretrained("finel_tickers2names_fe", "en", "finance/models") \
.setInputCols(["ner_chunk", "sentence_embeddings"]) \
.setOutputCol("name")\
.setDistanceFunction("EUCLIDEAN")
pipelineModel = nlp.Pipeline(
stages = [
documentAssembler,
embeddings,
resolver])
lp = LightPipeline(pipelineModel)
lp.fullAnnotate("HP")
Results
['HP Inc. Common Stock']
Model Information
| Model Name: | finel_tickers2names_fe |
| Compatibility: | Finance NLP 1.0.0+ |
| License: | Licensed |
| Edition: | Official |
| Input Labels: | [sentence_embeddings] |
| Output Labels: | [normalized] |
| Language: | en |
| Size: | 115.7 MB |
| Case sensitive: | false |
References
https://data.world/johnsnowlabs/list-of-companies-in-nasdaq-exchanges