Extract Health and Behaviours Problems Entities from Social Determinants of Health Texts

Description

This model extracts health and behaviours problems related to Social Determinants of Health from various kinds of biomedical documents.

Predicted Entities

Diet, Mental_Health, Obesity, Eating_Disorder, Sexual_Activity, Disability, Quality_Of_Life, Other_Disease, Exercise, Communicable_Disease, Hyperlipidemia, Hypertension

Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "en")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")

clinical_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"])\
    .setOutputCol("embeddings")

ner_model = MedicalNerModel.pretrained("ner_sdoh_health_behaviours_problems_wip", "en", "clinical/models")\
    .setInputCols(["sentence", "token", "embeddings"])\
    .setOutputCol("ner")

ner_converter = NerConverterInternal()\
    .setInputCols(["sentence", "token", "ner"])\
    .setOutputCol("ner_chunk")

pipeline = Pipeline(stages=[
    document_assembler, 
    sentence_detector,
    tokenizer,
    clinical_embeddings,
    ner_model,
    ner_converter   
    ])

sample_texts = ["She has not been getting regular exercise and not followed diet for approximately two years due to chronic sciatic pain.",
             "Medical History: The patient is a 32-year-old female who presents with a history of anxiety, depression, bulimia nervosa, elevated cholesterol, and substance abuse.",
               "Pt was intubated atthe scene & currently sedated due to high BP. Also, he is currently on social security disability."]



data = spark.createDataFrame(sample_texts, StringType()).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "en")
    .setInputCols("document")
    .setOutputCol("sentence")

val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")

val clinical_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")

val ner_model = MedicalNerModel.pretrained("ner_sdoh_health_behaviours_problems_wip", "en", "clinical/models")
    .setInputCols(Array("sentence", "token","embeddings"))
    .setOutputCol("ner")

val ner_converter = new NerConverterInternal()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")

val pipeline = new Pipeline().setStages(Array(
    document_assembler, 
    sentence_detector,
    tokenizer,
    clinical_embeddings,
    ner_model,
    ner_converter   
))

val data = Seq("She has not been getting regular exercise for approximately two years due to chronic sciatic pain.").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Results

+--------------------+-----+---+---------------+
|chunk               |begin|end|ner_label      |
+--------------------+-----+---+---------------+
|regular exercise    |25   |40 |Exercise       |
|diet                |59   |62 |Diet           |
|chronic sciatic pain|99   |118|Other_Disease  |
|anxiety             |84   |90 |Mental_Health  |
|depression          |93   |102|Mental_Health  |
|bulimia nervosa     |105  |119|Eating_Disorder|
|elevated cholesterol|122  |141|Hyperlipidemia |
|high BP             |56   |62 |Hypertension   |
|disability          |106  |115|Disability     |
+--------------------+-----+---+---------------+

Model Information

Model Name: ner_sdoh_health_behaviours_problems_wip
Compatibility: Healthcare NLP 5.3.3+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 3.0 MB

Benchmarking

               label	   tp	   fp	   fn	 total	precision	  recall	      f1
     Quality_Of_Life	127.0	 19.0	  3.0	 130.0	 0.869863	0.976923	0.920290
     Eating_Disorder	 56.0	  5.0	  0.0	  56.0	 0.918033	1.000000	0.957265
             Obesity	 16.0	  2.0	  7.0	  23.0	 0.888889	0.695652	0.780488
            Exercise	103.0	  6.0	  5.0	 108.0	 0.944954	0.953704	0.949309
Communicable_Disease	 61.0	 11.0	  5.0	  66.0	 0.847222	0.924242	0.884058
        Hypertension	 52.0	  0.0	  2.0	  54.0	 1.000000	0.962963	0.981132
       Other_Disease 1068.0	 85.0	 79.0 1147.0	 0.926279	0.931125	0.928696
                Diet	 66.0	 12.0	 15.0	  81.0	 0.846154	0.814815	0.830189
          Disability	 95.0	  1.0	  6.0	 101.0	 0.989583	0.940594	0.964467
       Mental_Health 1020.0	 45.0	134.0	1154.0	 0.957746	0.883882	0.919333
      Hyperlipidemia	 19.0	  1.0	  2.0	  21.0	 0.950000	0.904762	0.926829
     Sexual_Activity	 82.0	 15.0	  6.0	  88.0	 0.845361	0.931818	0.886486