Description
This model maps drug and substances to UMLS CUI codes. It is trained on ´2023AB´ release of the Unified Medical Language System (UMLS) dataset. The complete dataset has 127 different categories, and this model is trained on the ´Clinical Drug´, ´Pharmacologic Substance´, ´Antibiotic´, and ´Hazardous or Poisonous Substance´ categories using ´sbiobert_base_cased_mli´ embeddings.
Predicted Entities
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical","en","clinical/models")\
.setInputCols(["sentence","token"])\
.setOutputCol("embeddings")
ner_model = MedicalNerModel.pretrained("ner_posology_greedy","en","clinical/models")\
.setInputCols(["sentence","token","embeddings"])\
.setOutputCol("posology_ner")
ner_model_converter = NerConverterInternal()\
.setInputCols(["sentence","token","posology_ner"])\
.setOutputCol("posology_ner_chunk")\
.setWhiteList(["DRUG"])
chunk2doc = Chunk2Doc()\
.setInputCols("posology_ner_chunk")\
.setOutputCol("ner_chunk_doc")
sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli",'en','clinical/models')\
.setInputCols(["ner_chunk_doc"])\
.setOutputCol("sbert_embeddings")\
.setCaseSensitive(False)
resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_umls_drug_substance","en", "clinical/models") \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")
pipeline = Pipeline(stages=[
documentAssembler,
sentenceDetector,
tokenizer,
word_embeddings,
ner_model,
ner_model_converter,
chunk2doc,
sbert_embedder,
resolver
])
data = spark.createDataFrame([["She was immediately given hydrogen peroxide 30 mg to treat the infection on her leg, and has been advised Neosporin Cream for 5 days. She has a history of taking magnesium hydroxide 100mg/1ml and metformin 1000 mg."]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = new SentenceDetector()
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel
.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val ner_model = MedicalNerModel.pretrained("ner_posology_greedy", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("posology_ner")
val ner_model_converter = new NerConverterInternal()
.setInputCols(Array("sentence", "token", "posology_ner"))
.setOutputCol("posology_ner_chunk")
.setWhiteList(["DRUG"])
val chunk2doc = new Chunk2Doc()
.setInputCols("posology_ner_chunk")
.setOutputCol("ner_chunk_doc")
val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en","clinical/models")
.setInputCols(Array("ner_chunk_doc"))
.setOutputCol("sbert_embeddings")
.setCaseSensitive(False)
val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_umls_drug_substance", "en", "clinical/models")
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("resolution")
.setDistanceFunction("EUCLIDEAN")
val p_model = new Pipeline().setStages(Array(
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner_model,
ner_model_converter,
chunk2doc,
sbert_embedder,
resolver))
val data = Seq("She was immediately given hydrogen peroxide 30 mg to treat the infection on her leg, and has been advised Neosporin Cream for 5 days. She has a history of taking magnesium hydroxide 100mg/1ml and metformin 1000 mg.").toDF("text")
val res = p_model.fit(data).transform(data)
Results
+-----------------------------+-----+---+------+---------+--------------------------+------------------------------------------------------------+------------------------------------------------------------+
| ner_chunk|begin|end|entity|umls_code| resolved_text| all_k_results| all_k_resolutions|
+-----------------------------+-----+---+------+---------+--------------------------+------------------------------------------------------------+------------------------------------------------------------+
| hydrogen peroxide 30 mg| 26| 48| DRUG| C1126248|hydrogen peroxide 30 mg/ml|C1126248:::C0304655:::C1605252:::C0304656:::C1154260:::C2...|hydrogen peroxide 30 mg/ml:::hydrogen peroxide solution 3...|
| Neosporin Cream| 107|121| DRUG| C0132149| neosporin cream|C0132149:::C0358174:::C0357999:::C0307085:::C0698810:::C0...|neosporin cream:::nystan cream:::nystadermal cream:::nupe...|
|magnesium hydroxide 100mg/1ml| 163|191| DRUG| C1134402|magnesium hydroxide 100 mg|C1134402:::C1126785:::C4317023:::C4051486:::C4047137:::C1...|magnesium hydroxide 100 mg:::magnesium hydroxide 100 mg/m...|
| metformin 1000 mg| 197|213| DRUG| C0987664| metformin 1000 mg|C0987664:::C2719784:::C0978482:::C2719786:::C4282269:::C2...|metformin 1000 mg:::metformin hydrochloride 1000 mg:::met...|
+-----------------------------+-----+---+------+---------+--------------------------+------------------------------------------------------------+------------------------------------------------------------+
Model Information
Model Name: | sbiobertresolve_umls_drug_substance |
Compatibility: | Healthcare NLP 5.3.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence_embeddings] |
Output Labels: | [umls_code] |
Language: | en |
Size: | 2.9 GB |
Case sensitive: | false |
References Trained on the ´Clinical Drug´ concept of the ´2023AB´ release of the Unified Medical Language System® (UMLS) Knowledge Sources: https://www.nlm.nih.gov/research/umls/index.html