Table Detection v3

Description

Object detection model trained to detect tables leverages one of the foremost architectures in the state-of-the-art, meticulously selected through benchmark evaluations and comparative analyses. Trained on an extensive and diverse dataset, this model has been finely tuned for precise table detection within documents. Its efficacy has been verified through rigorous testing, demonstrating exceptional performance in table detection across a spectrum of document formats.

Predicted Entities

table.

Live Demo Open in Colab Copy S3 URI

How to use

binary_to_image = BinaryToImage()

cell_detector = ImageDocumentRegionDetector() \
    .pretrained("table_detection_v3", "en", "clinical/ocr") \
    .setInputCol("image") \
    .setOutputCol("regions") \
    .setScoreThreshold(0.8)

draw_regions = ImageDrawRegions() \
    .setInputCol("image") \
    .setInputRegionsCol("regions") \
    .setOutputCol("image_with_regions") \
    .setRectColor(Color.red)


pipeline = PipelineModel(stages=[
    binary_to_image,
    cell_detector,
    draw_regions,
])

imagePath = 'document.jpg'
image_df = spark.read.format("binaryFile").load(imagePath).sort("path")

result = pipeline.transform(image_df)
val binary_to_image = BinaryToImage()

val cell_detector = ImageDocumentRegionDetector()
    .pretrained("table_detection_v3", "en", "clinical/ocr")
    .setInputCol("image")
    .setOutputCol("regions")
    .setScoreThreshold(0.8)

val draw_regions = ImageDrawRegions()
    .setInputCol("image")
    .setInputRegionsCol("regions")
    .setOutputCol("image_with_regions")
    .setRectColor(Color.red)

val pipeline = new PipelineModel().setStages(Array(
    binary_to_image,
    cell_detector,
    draw_regions))

val imagePath = "document.jpg"
val image_df = spark.read.format("binaryFile").load(imagePath).sort("path")

val result = pipeline.transform(image_df)

Example

Input:

Screenshot

Output:

Screenshot

Model Information

Model Name: table_detection_v3
Type: ocr
Compatibility: Visual NLP 5.2.0+
License: Licensed
Edition: Official
Language: en