Description
Object detection model trained to detect handwritten text one of the foremost architectures in the state-of-the-art, meticulously selected through benchmark evaluations and comparative analyses. Trained on an extensive and diverse dataset, this model has been finely tuned for precise handwritten text detection within documents. Its efficacy has been verified through rigorous testing, demonstrating exceptional performance in handwritten text detection across a spectrum of document formats.
Predicted Entities
hw
, signature
.
Live Demo Open in Colab Copy S3 URI
How to use
binary_to_image = BinaryToImage() \
.setImageType(ImageType.TYPE_3BYTE_BGR)
text_detector = ImageDocumentRegionDetector \
.pretrained("image_handwritten_detector_jsl", "en", "clinical/ocr") \
.setInputCol("image") \
.setOutputCol("regions") \
.setScoreThreshold(0.25)
draw_regions = ImageDrawRegions() \
.setInputCol("image") \
.setInputRegionsCol("regions") \
.setOutputCol("image_with_regions") \
.setFilledRect(False) \
.setRectColor(Color.gray)
pipeline = PipelineModel(stages=[
binary_to_image,
text_detector,
draw_regions
])
img_path = '/content/image_hw.jpeg'
image_df = spark.read.format("binaryFile").load(img_path).sort("path")
result = pipeline.transform(image_df)
val binary_to_image = BinaryToImage()
.setImageType(ImageType.TYPE_3BYTE_BGR)
val text_detector = ImageDocumentRegionDetector
.pretrained("image_handwritten_detector_jsl", "en", "clinical/ocr")
.setInputCol("image")
.setOutputCol("regions")
.setScoreThreshold(0.25)
val draw_regions = ImageDrawRegions()
.setInputCol("image")
.setInputRegionsCol("regions")
.setOutputCol("image_with_regions")
.setFilledRect(False)
.setRectColor(Color.gray)
val pipeline = new PipelineModel().setStages(Array(
binary_to_image,
text_detector,
draw_regions))
val img_path = "/content/image_hw.jpeg"
val image_df = spark.read.format("binaryFile").load(img_path).sort("path")
val result = pipeline.transform(image_df)
Example
Model Information
Model Name: | image_handwritten_detector_jsl |
Type: | ocr |
Compatibility: | Visual NLP 5.2.0+ |
License: | Licensed |
Edition: | Official |
Language: | en |