Mapping RxNorm Codes with Their Corresponding UMLS Codes

Description

This pretrained model maps RxNorm codes to corresponding UMLS codes.

Predicted Entities

Open in Colab Copy S3 URI

How to use

documentAssembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("ner_chunk")

sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en","clinical/models")\
    .setInputCols(["ner_chunk"])\
    .setOutputCol("sbert_embeddings")

rxnorm_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_rxnorm_augmented", "en", "clinical/models")\
    .setInputCols(["sbert_embeddings"])\
    .setOutputCol("rxnorm_code")\
    .setDistanceFunction("EUCLIDEAN")

resolver2chunk = Resolution2Chunk()\
    .setInputCols(["rxnorm_code"])\
    .setOutputCol("rxnorm2chunk")

chunkerMapper = ChunkMapperModel.pretrained("rxnorm_umls_mapper", "en", "clinical/models")\
    .setInputCols(["rxnorm2chunk"])\
    .setOutputCol("umls_mappings")\
    .setRels(["umls_code"])


pipeline = Pipeline(stages = [
    documentAssembler,
    sbert_embedder,
    rxnorm_resolver,
    resolver2chunk,
    chunkerMapper
])

data = spark.createDataFrame([['amlodipine 5 MG'], ['magnesium hydroxide 100 MG'], ['metformin 1000 MG'], ['dilaudid']]).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)
val documentAssembler = DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("ner_chunk")

val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en","clinical/models")
    .setInputCols(Array("ner_chunk"))
    .setOutputCol("sbert_embeddings")

val rxnorm_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_rxnorm_augmented", "en", "clinical/models")
    .setInputCols(Array("sbert_embeddings"))
    .setOutputCol("rxnorm_code")
    .setDistanceFunction("EUCLIDEAN")

val resolver2chunk = Resolution2Chunk()
    .setInputCols(Array("rxnorm_code"))
    .setOutputCol("rxnorm2chunk")

val chunkerMapper = ChunkMapperModel.pretrained("rxnorm_umls_mapper", "en", "clinical/models")
    .setInputCols(Array("rxnorm_code"))
    .setOutputCol("umls_mappings")
    .setRels(Array("umls_code"))


val pipeline = Pipeline().setStages(Array(
    documentAssembler,
    sbert_embedder,
    rxnorm_resolver,
    resolver2chunk,
    chunkerMapper)

val data = Seq(
  ("amlodipine 5 MG"),
  ("magnesium hydroxide 100 MG"),
  ("metformin 1000 MG"),
  ("dilaudid")
).toDF("text")

val model = pipeline.fit(data)
val result = model.transform(data)

Results

+--------------------------+-----------+---------+
|chunk                     |rxnorm_code|umls_code|
+--------------------------+-----------+---------+
|amlodipine 5 MG           |329528     |C1124796 |
|magnesium hydroxide 100 MG|337012     |C1134402 |
|metformin 1000 MG         |316255     |C0987664 |
|dilaudid                  |224913     |C0728755 |
+--------------------------+-----------+---------+

Model Information

Model Name: rxnorm_umls_mapper
Compatibility: Healthcare NLP 5.3.0+
License: Licensed
Edition: Official
Input Labels: [ner_chunk]
Output Labels: [mappings]
Language: en
Size: 3.0 MB