Clinical Deidentification Pipeline (English - Subentity)

Description

This pipeline can be used to de-identify PHI information from medical texts. The PHI information will be masked and obfuscated in the resulting text. The pipeline can mask and obfuscate MEDICALRECORD, ORGANIZATION, PROFESSION, HEALTHPLAN, DOCTOR, USERNAME, LOCATION-OTHER, URL, DEVICE, CITY, DATE, ZIP, STATE, PATIENT, COUNTRY, STREET, PHONE, HOSPITAL, EMAIL, IDNUM, BIOID, FAX, AGE, SSN, ACCOUNT, DLN, PLATE, VIN, LICENSE entities. This pipeline is built using the ner_deid_subentity_augmented model as well as ContextualParser, RegexMatcher, and TextMatcher.

Predicted Entities

MEDICALRECORD, ORGANIZATION, PROFESSION, HEALTHPLAN, DOCTOR, USERNAME, LOCATION-OTHER, URL, DEVICE, CITY, DATE, ZIP, STATE, PATIENT, COUNTRY, STREET, PHONE, HOSPITAL, EMAIL, IDNUM, BIOID, FAX, AGE, SSN, ACCOUNT, DLN, PLATE, VIN, LICENSE

Copy S3 URI

How to use


from sparknlp.pretrained import PretrainedPipeline

deid_pipeline = PretrainedPipeline("clinical_deidentification_subentity", "en", "clinical/models")

text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR: 719435.
Dr. John Green, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""

result = deid_pipeline.annotate(text)



import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val deid_pipeline = PretrainedPipeline("clinical_deidentification_subentity", "en", "clinical/models")

val text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR: 719435.
Dr. John Green, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""

val result = deid_pipeline.annotate(text)

Results


print("
Masked with entity labels")
print("-"*30)
print("
".join(result['masked']))
print("
Masked with chars")
print("-"*30)
print("
".join(result['masked_with_chars']))
print("
Masked with fixed length chars")
print("-"*30)
print("
".join(result['masked_fixed_length_chars']))
print("
Obfuscated")
print("-"*30)
print("
".join(result['obfuscated']))

Masked with entity labels
------------------------------
Name : <PATIENT>, Record date: <DATE>, MR <MEDICALRECORD>.
Dr. <DOCTOR>, IP <IPADDR>.
He is a <AGE>-year-old male was admitted to the <HOSPITAL> for cystectomy on <DATE>.
Patient's VIN : <VIN>, SSN <SSN>, Driver's license no: <DLN>.
Phone <PHONE>, <STREET>, <CITY>, E-MAIL: <EMAIL>.

Masked with chars
------------------------------
Name : [**************], Record date: [********], MR [****].
Dr. [********], IP [************].
He is a **-year-old male was admitted to the [**********] for cystectomy on [******].
Patient's VIN : [***************], SSN [**********], Driver's license no: [******].
Phone [************], [***************], [***********], E-MAIL: [*************].

Masked with fixed length chars
------------------------------
Name : ****, Record date: ****, MR ****.
Dr. ****, IP ****.
He is a ****-year-old male was admitted to the **** for cystectomy on ****.
Patient's VIN : ****, SSN ****, Driver's license no: ****.
Phone ****, ****, ****, E-MAIL: ****.

Obfuscated
------------------------------
Name : Neta Ehlers, Record date: 2093-01-18, MR 175102.
Dr. Tomi Bamberger, IP 444.444.444.444.
He is a 68-year-old male was admitted to the ROYAL OAKS HOSPITAL for cystectomy on 01/18/93.
Patient's VIN : 5ENID78EUMP536144, SSN #315-40-0867, Driver's license no: Y195093O.
Phone (671) 245-8099, 401 E Vaughn Ave, Brawley, E-MAIL: Dene@google.com.

Model Information

Model Name: clinical_deidentification_subentity
Type: pipeline
Compatibility: Healthcare NLP 5.2.1+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • TextMatcherModel
  • ContextualParserModel
  • RegexMatcherModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ChunkMergeModel
  • ChunkMergeModel
  • DeIdentificationModel
  • DeIdentificationModel
  • DeIdentificationModel
  • DeIdentificationModel
  • Finisher