Pipeline for National Drug Codes (NDC) Sentence Entity Resolver

Description

This advanced pipeline extracts medication entities from clinical texts and utilizes the sbiobert_base_cased_mli Sentence Bert Embeddings to map these entities to their corresponding National Drug Codes (NDC) codes.

Predicted Entities

DRUG

Open in Colab Copy S3 URI

How to use


from sparknlp.pretrained import PretrainedPipeline

ner_pipeline = PretrainedPipeline("ndc_resolver_pipeline", "en", "clinical/models")

result = ner_pipeline.annotate("""The patient was given aspirin 81 mg and metformin 500 mg""")


import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val ner_pipeline = PretrainedPipeline("ndc_resolver_pipeline", "en", "clinical/models")

val result = ner_pipeline.annotate("""The patient was given aspirin 81 mg and metformin 500 mg""")

Results

+----------------+-----+---+---------+----------+-------------------+--------------------------------------------------------------------------------+
|           chunk|begin|end|ner_label|       ndc|        description|                                                                      aux_labels|
+----------------+-----+---+---------+----------+-------------------+--------------------------------------------------------------------------------+
|   aspirin 81 mg|   22| 34|     DRUG|41250-0780|      aspirin 81 mg|{'packages': "['1 BOTTLE, PLASTIC in 1 PACKAGE (41250-780-01)  > 120 TABLET, ...|
|metformin 500 mg|   40| 55|     DRUG|62207-0491|metformin er 500 mg|{'packages': "['5000 TABLET in 1 POUCH (62207-491-31)', '25000 TABLET in 1 CA...|
+----------------+-----+---+---------+----------+-------------------+--------------------------------------------------------------------------------+

Model Information

Model Name: ndc_resolver_pipeline
Type: pipeline
Compatibility: Healthcare NLP 5.2.1+
License: Licensed
Edition: Official
Language: en
Size: 3.0 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • Chunk2Doc
  • BertSentenceEmbeddings
  • SentenceEntityResolverModel