Sentence Embeddings - Biobert cased (MedNLI, onnx)

Description

This model is trained to generate contextual sentence embeddings of input sentences. It has been fine-tuned on MedNLI dataset to provide sota performance on STS and SentEval Benchmarks.

Predicted Entities

Copy S3 URI

How to use


sbiobert_embeddings = BertSentenceEmbeddings\
  .pretrained("sbiobert_base_cased_mli_onnx", "en", "clinical/models")\
  .setInputCols(["ner_chunk_doc"])\
  .setOutputCol("sbert_embeddings")


val sbiobert_embeddings = BertSentenceEmbeddings
  .pretrained("sbiobert_base_cased_mli_onnx", "en", "clinical/models")
  .setInputCols(Array("ner_chunk_doc"))
  .setOutputCol("sbert_embeddings")

Results

Gives a 768 dimensional vector representation of the sentence.

Model Information

Model Name: sbiobert_base_cased_mli_onnx
Compatibility: Healthcare NLP 5.2.1+
License: Licensed
Edition: Official
Input Labels: [document]
Output Labels: [sentence_embeddings_onnx]
Language: en
Size: 403.1 MB
Case sensitive: false