Detect Chemical Compounds and Genes (LangTest)

Description

This is a pre-trained model that can be used to automatically detect all chemical compounds and gene mentions from medical texts. It is the version of ner_chemprot_clinical model augmented with langtest library.

test_type before fail_count after fail_count before pass_count after pass_count minimum pass_rate before pass_rate after pass_rate
add_ocr_typo 798 157 1096 1737 70% 58% 92%
lowercase 745 426 1160 1479 70% 61% 78%
titlecase 866 419 1066 1513 70% 55% 78%
uppercase 1458 418 473 1513 70% 24% 78%
weighted average 3867 1420 3795 6242 70% 49.53% 81.47%

Predicted Entities

CHEMICAL, GENE-Y, GENE-N

Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
         
sentence_detector = SentenceDetector()\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"])\
    .setOutputCol("embeddings")

clinical_ner = MedicalNerModel.pretrained("ner_chemprot_clinical_langtest", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverter()\
 	  .setInputCols(["sentence", "token", "ner"])\
 	  .setOutputCol("ner_chunk")

nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, word_embeddings, clinical_ner, ner_converter])

model = nlpPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))

result = model.transform(spark.createDataFrame([["Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium."]]).toDF("text"))
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
         
val sentence_detector = new SentenceDetector()
    .setInputCols("document")
    .setOutputCol("sentence")

val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")

val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")

val ner = MedicalNerModel.pretrained("ner_chemprot_clinical_langtest", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")

val ner_converter = new NerConverter()
 	.setInputCols(Array("sentence", "token", "ner"))
 	.setOutputCol("ner_chunk")

val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, word_embeddings, ner, ner_converter))

val data = Seq("""Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.""").toDS().toDF("text")

val result = pipeline.fit(data).transform(data)

Results

+-------------------------------+---------+
|chunk                          |ner_label|
+-------------------------------+---------+
|Keratinocyte growth factor     |GENE-Y   |
|acidic fibroblast growth factor|GENE-Y   |
+-------------------------------+---------+

Model Information

Model Name: ner_chemprot_clinical_langtest
Compatibility: Healthcare NLP 5.1.1+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 14.6 MB

References

This model was trained on the ChemProt corpus using ‘embeddings_clinical’ embeddings. Make sure you use the same embeddings when running the model.

Benchmarking

label         precision  recall  f1-score  support 
CHEMICAL      0.92       0.93    0.92      2530    
GENE-N        0.75       0.67    0.71      984     
GENE-Y        0.84       0.87    0.86      1751    
micro-avg     0.86       0.86    0.86      5265    
macro-avg     0.84       0.82    0.83      5265    
weighted-avg  0.86       0.86    0.86      5265