Description
This model extracts mentions of treatments and posology information using unspecific labels (low granularity). It is the version of ner_oncology_unspecific_posology model augmented with langtest library.
Definitions of Predicted Entities:
- Cancer_Therapy: Mentions of cancer treatments, including chemotherapy, radiotherapy, surgery, and others.
- Posology_Information: Terms related to the posology of the treatment, including duration, frequencies, and dosage.
| test_type | before fail_count | after fail_count | before pass_count | after pass_count | minimum pass_rate | before pass_rate | after pass_rate | 
|---|---|---|---|---|---|---|---|
| add_ocr_typo | 658 | 228 | 630 | 1060 | 70% | 49% | 82% | 
| add_slangs | 20 | 14 | 1268 | 1274 | 60% | 98% | 99% | 
| add_typo | 167 | 142 | 1121 | 1146 | 60% | 87% | 89% | 
| lowercase | 166 | 116 | 1122 | 1172 | 70% | 87% | 91% | 
| titlecase | 600 | 200 | 688 | 1088 | 70% | 53% | 84% | 
| uppercase | 1195 | 268 | 93 | 1020 | 60% | 7% | 79% | 
| weighted average | 2806 | 968 | 4922 | 6760 | 65% | 63.69% | 87.47% | 
Predicted Entities
Cancer_Therapy, Posology_Information
How to use
document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")
tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")
word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                
ner = MedicalNerModel.pretrained("ner_oncology_unspecific_posology_langtest", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")
ner_converter = NerConverter() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter])
data = spark.createDataFrame([["The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition."]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")
    .setInputCols("document")
    .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_unspecific_posology_langtest", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
    
val ner_converter = new NerConverter()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")
        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter))    
val data = Seq("The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Results
+----------------+--------------------+
|chunk           |ner_label           |
+----------------+--------------------+
|adriamycin      |Cancer_Therapy      |
|60 mg/m2        |Posology_Information|
|cyclophosphamide|Cancer_Therapy      |
|600 mg/m2       |Posology_Information|
|six courses     |Posology_Information|
|second cycle    |Posology_Information|
|chemotherapy    |Cancer_Therapy      |
+----------------+--------------------+
Model Information
| Model Name: | ner_oncology_unspecific_posology_langtest | 
| Compatibility: | Healthcare NLP 5.1.0+ | 
| License: | Licensed | 
| Edition: | Official | 
| Input Labels: | [sentence, token, embeddings] | 
| Output Labels: | [ner] | 
| Language: | en | 
| Size: | 14.6 MB | 
References
In-house annotated oncology case reports.
Benchmarking
label                 precision  recall  f1-score  support 
Cancer_Therapy        0.90       0.90    0.90      1845    
Posology_Information  0.87       0.86    0.87      1199    
micro-avg             0.89       0.89    0.89      3044    
macro-avg             0.89       0.88    0.88      3044    
weighted-avg          0.89       0.89    0.89      3044