Extract Biomarkers and their Results (LangTest)

Description

This model extracts mentions of biomarkers and biomarker results from oncology texts. It is the version of ner_oncology_biomarker model augmented with langtest library.

Definitions of Predicted Entities:

  • Biomarker: Biological molecules that indicate the presence or absence of cancer, or the type of cancer (including oncogenes).
  • Biomarker_Result: Terms or values that are identified as the result of biomarkers.
test_type before fail_count after fail_count before pass_count after pass_count minimum pass_rate before pass_rate after pass_rate
add_abbreviation 87 75 1879 1891 92% 96% 96%
add_ocr_typo 144 125 2037 2056 92% 93% 94%
add_punctuation 1 0 97 98 92% 99% 100%
add_typo 52 40 2128 2149 92% 98% 98%
number_to_word 114 82 867 899 92% 88% 92%
strip_all_punctuation 97 86 2149 2160 92% 96% 96%
titlecase 168 164 2092 2096 92% 93% 93%
uppercase 217 97 2049 2169 92% 90% 96%
weighted average 880 669 13298 13518 92% 93.79% 95.28%

Predicted Entities

Biomarker, Biomarker_Result

Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                

ner = MedicalNerModel.pretrained("ner_oncology_biomarker_langtest", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverter() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")

pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter])

data = spark.createDataFrame([["The results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87% ."]]).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")
    .setInputCols("document")
    .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_biomarker_langtest", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
    
val ner_converter = new NerConverter()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")

        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter))    

val data = Seq("The results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87% .").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Results

+----------------------------------------+----------------+
|chunk                                   |ner_label       |
+----------------------------------------+----------------+
|negative                                |Biomarker_Result|
|CK7                                     |Biomarker       |
|synaptophysin                           |Biomarker       |
|Syn                                     |Biomarker       |
|chromogranin A                          |Biomarker       |
|CgA                                     |Biomarker       |
|Muc5AC                                  |Biomarker_Result|
|human epidermal growth factor receptor-2|Biomarker       |
|HER2                                    |Biomarker       |
|Muc6                                    |Biomarker       |
|positive                                |Biomarker_Result|
|CK20                                    |Biomarker       |
|Muc1                                    |Biomarker       |
|Muc2                                    |Biomarker       |
|E-cadherin                              |Biomarker       |
|p53                                     |Biomarker       |
|Ki-67 index                             |Biomarker       |
+----------------------------------------+----------------+

Model Information

Model Name: ner_oncology_biomarker_langtest
Compatibility: Healthcare NLP 5.1.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 14.8 MB

References

In-house annotated oncology case reports.

Benchmarking

label             precision  recall  f1-score  support 
Biomarker         0.86       0.85    0.85      615     
Biomarker_Result  0.79       0.72    0.75      346     
micro-avg         0.84       0.80    0.82      961     
macro-avg         0.82       0.78    0.80      961     
weighted-avg      0.83       0.80    0.82      961