Extract Demographic Entities from Oncology Texts (langtest)

Description

This model extracts demographic information from oncology texts, including age, gender, and smoking status. It is the version of ner_oncology_demographics model augmented with langtest library

Definitions of Predicted Entities:

  • Age: All mention of ages, past or present, related to the patient or with anybody else.
  • Gender: Gender-specific nouns and pronouns (including words such as “him” or “she”, and family members such as “father”).
  • Race_Ethnicity: The race and ethnicity categories include racial and national origin or sociocultural groups.
  • Smoking_Status: All mentions of smoking related to the patient or to someone else.

Predicted Entities

Age, Gender, Race_Ethnicity, Smoking_Status

Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                

ner = MedicalNerModel.pretrained("ner_oncology_demographics_langtest", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverter() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")

pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter])

data = spark.createDataFrame([["The patient is a 40 year old man with history of heavy smoking."]]).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
    .setInputCols("document")
    .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_demographics_langtest", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
    
val ner_converter = new NerConverter()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")

        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter))    

val data = Seq("The patient is a 40 year old man with history of heavy smoking.").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Results

+-----------+--------------+
|chunk      |ner_label     |
+-----------+--------------+
|40 year old|Age           |
|man        |Gender        |
|smoking    |Smoking_Status|
+-----------+--------------+

Model Information

Model Name: ner_oncology_demographics_langtest
Compatibility: Healthcare NLP 5.0.2+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 14.8 MB

References

In-house annotated oncology case reports.

Benchmarking

label             precision  recall  f1-score  support 
B-Gender          0.99       1.00    0.99      1235    
B-Age             0.97       0.96    0.97      224     
I-Age             0.98       0.99    0.99      799     
B-Smoking_Status  0.93       0.89    0.91      57      
I-Gender          0.00       0.00    0.00      1       
B-Race_Ethnicity  0.87       1.00    0.93      45      
I-Race_Ethnicity  0.71       0.83    0.77      6       
I-Smoking_Status  0.67       0.91    0.77      11      
micro-avg         0.98       0.99    0.98      2378    
macro-avg         0.76       0.82    0.79      2378    
weighted-avg      0.98       0.99    0.98      2378