Dicom Image Classification

Description

This is a ViT (Visual Transformer) model, which can be used to carry out Classification on Dicom images. This model has been trained in-house with different corpora, including:

DICOM COCO In-house annotated documents You can use this model to classify images and document notes , and then use Visual NLP to extract information using the layout and the text features.

Predicted Entities

'image', 'document_notes', 'others'

Copy S3 URI

How to use

document_assembler = nlp.ImageAssembler() \
    .setInputCol("image") \
    .setOutputCol("image_assembler")

imageClassifier_loaded = nlp.ViTForImageClassification.pretrained("visualclf_vit_dicom", "en", "clinical/ocr")\
  .setInputCols(["image_assembler"])\
  .setOutputCol("class")

pipeline = nlp.Pipeline().setStages([
    document_assembler,
    imageClassifier_loaded
])

test_image = spark.read\
    .format("image")\
    .option("dropInvalid", value = True)\
    .load("./dicom.JPEG")

result = pipeline.fit(test_image).transform(test_image)

result.select("class.result").show(1, False)

Model Information

Model Name: visualclf_vit_dicom
Compatibility: Healthcare NLP 5.0.1+
License: Licensed
Edition: Official
Input Labels: [image_assembler]
Output Labels: [class]
Language: en
Size: 321.6 MB