ICD-10-CM Code Mapping Pipeline

Description

This pretrained pipeline maps ICD-10-CM codes to their corresponding billable mappings, hcc codes, cause mappings, claim mappings, SNOMED codes, UMLS codes and ICD-9 codes without using any text data. You’ll just feed white space-delimited ICD-10-CM codes and get the result.

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

icd10cm_pipeline = PretrainedPipeline("icd10cm_multi_mapper_pipeline", "en", "clinical/models")

result = icd10cm_pipeline.fullAnnotate("""Z833 D66 G43.83""")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val icd10cm_pipeline = new PretrainedPipeline("icd10cm_multi_mapper_pipeline", "en", "clinical/models")

val result = icd10cm_pipeline.fullAnnotate("""Z833 D66 G43.83""")

Results


|    | icd10cm_code   | bill_mappings   | hcc_mappings   | cause_mappings           | claim_mappings   | snomed_mappings   | umls_mappings   | icd9_mappings   |
|---:|:---------------|:----------------|:---------------|:-------------------------|:-----------------|:------------------|:----------------|:----------------|
|  0 | D66            | 1               | 46             | Nutritional deficiencies | NONE             | 438599002         | C0019069        | 2860            |
|  1 | Z833           | NONE            | NONE           | NONE                     | NONE             | 160402005         | C0260526        | V180            |
|  2 | G43.83         | 0               | 0              | Headache disorders       | G43.83           | NONE              | NONE            | NONE            |

Model Information

Model Name: icd10cm_multi_mapper_pipeline
Type: pipeline
Compatibility: Healthcare NLP 5.0.1+
License: Licensed
Edition: Official
Language: en
Size: 5.9 MB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • DocMapperModel
  • DocMapperModel
  • ChunkMapperModel
  • ChunkMapperModel
  • ChunkMapperModel
  • ChunkMapperModel
  • ChunkMapperModel