Description
This model is trained to generate contextual sentence embeddings of input sentences. It has been fine-tuned on MedNLI dataset to provide sota performance on STS and SentEval Benchmarks.
How to use
sbiobert_embeddings = BertSentenceEmbeddings\
.pretrained("sbiobert_base_cased_mli_onnx","en","clinical/models")\
.setInputCols(["ner_chunk_doc"])\
.setOutputCol("sbert_embeddings")
val sbiobert_embeddings = BertSentenceEmbeddings
.pretrained("sbiobert_base_cased_mli_onnx","en","clinical/models")
.setInputCols(Array("ner_chunk_doc"))
.setOutputCol("sbert_embeddings")
Results
Gives a 768 dimensional vector representation of the sentence.
Model Information
Model Name: | sbiobert_base_cased_mli_onnx |
Compatibility: | Healthcare NLP 5.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence] |
Output Labels: | [sentence_embeddings_onnx] |
Language: | en |
Size: | 403.1 MB |
Case sensitive: | true |