NER Pipeline for Treatments - Voice of the Patient

Description

This pipeline extracts mentions of treatment entities from health-related text in colloquial language.

Predicted Entities

Frequency, Treatment, Drug, Route, Form, Dosage, Duration, Procedure.

Live Demo Open in Colab Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_vop_treatment_pipeline", "en", "clinical/models")

pipeline.annotate("
My grandpa was diagnosed with type 2 diabetes and had to make some changes to his lifestyle. He also takes metformin and glipizide to help regulate his blood sugar levels. It's been a bit of an adjustment, but he's doing well.
")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_vop_treatment_pipeline", "en", "clinical/models")

val result = pipeline.annotate("
My grandpa was diagnosed with type 2 diabetes and had to make some changes to his lifestyle. He also takes metformin and glipizide to help regulate his blood sugar levels. It's been a bit of an adjustment, but he's doing well.
")

Results

| chunk     | ner_label   |
|:----------|:------------|
| metformin | Drug        |
| glipizide | Drug        |

Model Information

Model Name: ner_vop_treatment_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 791.6 MB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter