Description
This pretrained pipeline is built on the top of snomed_icd10cm_mapper
model.
Predicted Entities
Available as Private API Endpoint
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("snomed_icd10cm_mapping", "en", "clinical/models")
result = pipeline.fullAnnotate(["128041000119107", "292278006", "293072005"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("snomed_icd10cm_mapping", "en", "clinical/models")
val result = pipeline.fullAnnotate(["128041000119107", "292278006", "293072005"])
import nlu
nlu.load("en.map_entity.snomed_to_icd10cm.pipe").predict("""Put your text here.""")
Results
| | icd10cm_code | snomed_code |
|--:|-------------:|----------------:|
| 0 | K22.70 | 128041000119107 |
| 1 | T43.595 | 292278006 |
| 2 | T37.1X5 | 293072005 |
Model Information
Model Name: | snomed_icd10cm_mapping |
Type: | pipeline |
Compatibility: | Healthcare NLP 4.4.4+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 1.5 MB |
Included Models
- DocumentAssembler
- TokenizerModel
- ChunkMapperModel