RxNorm to MeSH Code Mapping

Description

This pretrained pipeline maps RxNorm codes to MeSH codes without using any text data. You’ll just feed white space-delimited RxNorm codes and it will return the corresponding MeSH codes as a list. If there is no mapping, the original code is returned with no mapping.

Predicted Entities

Open in Colab Copy S3 URI

Available as Private API Endpoint

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("rxnorm_mesh_mapping","en","clinical/models")
result = pipeline.fullAnnotate(["1191", "6809", "47613"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("rxnorm_mesh_mapping","en","clinical/models")
val result = pipeline.annotate(["1191", "6809", "47613"])
import nlu
nlu.load("en.resolve.rxnorm.mesh").predict("""Put your text here.""")

Results

|   | rxnorm | mesh_code |
|--:|-------:|----------:|
| 0 |   1191 |   D001241 |
| 1 |   6809 |   D008687 |
| 2 |  47613 |   D019355 |


Note: 

| RxNorm     | Details             | 
| ---------- | -------------------:|
| 1191       | aspirin             |
| 6809       | metformin           |
| 47613      | calcium citrate     |

| MeSH       | Details             |
| ---------- | -------------------:|
| D001241    | Aspirin             |
| D008687    | Metformin           |
| D019355    | Calcium Citrate     |

Model Information

Model Name: rxnorm_mesh_mapping
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 104.0 KB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • LemmatizerModel
  • Finisher