RE Pipeline between Problem, Test, and Findings in Reports

Description

This pretrained pipeline is built on the top of re_test_problem_finding model.

Predicted Entities

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("re_test_problem_finding_pipeline", "en", "clinical/models")

pipeline.fullAnnotate("Targeted biopsy of this lesion for histological correlation should be considered.")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("re_test_problem_finding_pipeline", "en", "clinical/models")

pipeline.fullAnnotate("Targeted biopsy of this lesion for histological correlation should be considered.")
import nlu
nlu.load("en.relation.test_problem_finding.pipeline").predict("""Targeted biopsy of this lesion for histological correlation should be considered.""")

Results

| index | relations    | entity1      | chunk1              | entity2      |  chunk2 |
|-------|--------------|--------------|---------------------|--------------|---------|
| 0     | 1            | PROCEDURE    | biopsy              | SYMPTOM      |  lesion | 

Model Information

Model Name: re_test_problem_finding_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetector
  • TokenizerModel
  • PerceptronModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • DependencyParserModel
  • RelationExtractionModel