RE Pipeline between Body Parts and Direction Entities

Description

This pretrained pipeline is built on the top of re_bodypart_directions model.

Predicted Entities

Admission_Discharge, Age, Alcohol, Allergen, BMI, Birth_Entity, Blood_Pressure, Cerebrovascular_Disease, Clinical_Dept, Communicable_Disease, Date, Death_Entity, Diabetes, Diet, Direction, Disease_Syndrome_Disorder, Dosage, Drug, Duration, EKG_Findings, Employment, External_body_part_or_region, Family_History_Header, Fetus_NewBorn, Form, Frequency, Gender, HDL, Heart_Disease, Height, Hyperlipidemia, Hypertension, ImagingFindings, Imaging_Technique, Injury_or_Poisoning, Internal_organ_or_component, Kidney_Disease, LDL, Labour_Delivery, Medical_Device, Medical_History_Header, Modifier, O2_Saturation, Obesity, Oncological, Overweight, Oxygen_Therapy, Pregnancy, Procedure, Psychological_Condition, Pulse, Race_Ethnicity, Relationship_Status, RelativeDate, RelativeTime, Respiration, Route, Section_Header, Sexually_Active_or_Sexual_Orientation, Smoking, Social_History_Header, Strength, Substance, Substance_Quantity, Symptom, Temperature, Test, Test_Result, Time, Total_Cholesterol, Treatment, Triglycerides, VS_Finding, Vaccine, Vital_Signs_Header, Weight

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("re_bodypart_directions_pipeline", "en", "clinical/models")

pipeline.fullAnnotate("MRI demonstrated infarction in the upper brain stem , left cerebellum and  right basil ganglia")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("re_bodypart_directions_pipeline", "en", "clinical/models")

pipeline.fullAnnotate("MRI demonstrated infarction in the upper brain stem , left cerebellum and  right basil ganglia")
import nlu
nlu.load("en.relation.bodypart_directions.pipeline").predict("""MRI demonstrated infarction in the upper brain stem , left cerebellum and  right basil ganglia""")

Results

| index | relations | entity1                     | entity1_begin | entity1_end | chunk1     | entity2                     | entity2_end | entity2_end | chunk2        | confidence |
|-------|-----------|-----------------------------|---------------|-------------|------------|-----------------------------|-------------|-------------|---------------|------------|
| 0     | 1         | Direction                   | 35            | 39          | upper      | Internal_organ_or_component | 41          | 50          | brain stem    | 0.9999989  |
| 1     | 0         | Direction                   | 35            | 39          | upper      | Internal_organ_or_component | 59          | 68          | cerebellum    | 0.99992585 |
| 2     | 0         | Direction                   | 35            | 39          | upper      | Internal_organ_or_component | 81          | 93          | basil ganglia | 0.9999999  |
| 3     | 0         | Internal_organ_or_component | 41            | 50          | brain stem | Direction                   | 54          | 57          | left          | 0.999811   |
| 4     | 0         | Internal_organ_or_component | 41            | 50          | brain stem | Direction                   | 75          | 79          | right         | 0.9998203  |
| 5     | 1         | Direction                   | 54            | 57          | left       | Internal_organ_or_component | 59          | 68          | cerebellum    | 1.0        |
| 6     | 0         | Direction                   | 54            | 57          | left       | Internal_organ_or_component | 81          | 93          | basil ganglia | 0.97616416 |
| 7     | 0         | Internal_organ_or_component | 59            | 68          | cerebellum | Direction                   | 75          | 79          | right         | 0.953046   |
| 8     | 1         | Direction                   | 75            | 79          | right      | Internal_organ_or_component | 81          | 93          | basil ganglia | 1.0        |

Model Information

Model Name: re_bodypart_directions_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetector
  • TokenizerModel
  • PerceptronModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • DependencyParserModel
  • RelationExtractionModel