Description
This pretrained pipeline is built on the top of re_bodypart_directions model.
Predicted Entities
Admission_Discharge
, Age
, Alcohol
, Allergen
, BMI
, Birth_Entity
, Blood_Pressure
, Cerebrovascular_Disease
, Clinical_Dept
, Communicable_Disease
, Date
, Death_Entity
, Diabetes
, Diet
, Direction
, Disease_Syndrome_Disorder
, Dosage
, Drug
, Duration
, EKG_Findings
, Employment
, External_body_part_or_region
, Family_History_Header
, Fetus_NewBorn
, Form
, Frequency
, Gender
, HDL
, Heart_Disease
, Height
, Hyperlipidemia
, Hypertension
, ImagingFindings
, Imaging_Technique
, Injury_or_Poisoning
, Internal_organ_or_component
, Kidney_Disease
, LDL
, Labour_Delivery
, Medical_Device
, Medical_History_Header
, Modifier
, O2_Saturation
, Obesity
, Oncological
, Overweight
, Oxygen_Therapy
, Pregnancy
, Procedure
, Psychological_Condition
, Pulse
, Race_Ethnicity
, Relationship_Status
, RelativeDate
, RelativeTime
, Respiration
, Route
, Section_Header
, Sexually_Active_or_Sexual_Orientation
, Smoking
, Social_History_Header
, Strength
, Substance
, Substance_Quantity
, Symptom
, Temperature
, Test
, Test_Result
, Time
, Total_Cholesterol
, Treatment
, Triglycerides
, VS_Finding
, Vaccine
, Vital_Signs_Header
, Weight
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("re_bodypart_directions_pipeline", "en", "clinical/models")
pipeline.fullAnnotate("MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("re_bodypart_directions_pipeline", "en", "clinical/models")
pipeline.fullAnnotate("MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia")
import nlu
nlu.load("en.relation.bodypart_directions.pipeline").predict("""MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia""")
Results
| index | relations | entity1 | entity1_begin | entity1_end | chunk1 | entity2 | entity2_end | entity2_end | chunk2 | confidence |
|-------|-----------|-----------------------------|---------------|-------------|------------|-----------------------------|-------------|-------------|---------------|------------|
| 0 | 1 | Direction | 35 | 39 | upper | Internal_organ_or_component | 41 | 50 | brain stem | 0.9999989 |
| 1 | 0 | Direction | 35 | 39 | upper | Internal_organ_or_component | 59 | 68 | cerebellum | 0.99992585 |
| 2 | 0 | Direction | 35 | 39 | upper | Internal_organ_or_component | 81 | 93 | basil ganglia | 0.9999999 |
| 3 | 0 | Internal_organ_or_component | 41 | 50 | brain stem | Direction | 54 | 57 | left | 0.999811 |
| 4 | 0 | Internal_organ_or_component | 41 | 50 | brain stem | Direction | 75 | 79 | right | 0.9998203 |
| 5 | 1 | Direction | 54 | 57 | left | Internal_organ_or_component | 59 | 68 | cerebellum | 1.0 |
| 6 | 0 | Direction | 54 | 57 | left | Internal_organ_or_component | 81 | 93 | basil ganglia | 0.97616416 |
| 7 | 0 | Internal_organ_or_component | 59 | 68 | cerebellum | Direction | 75 | 79 | right | 0.953046 |
| 8 | 1 | Direction | 75 | 79 | right | Internal_organ_or_component | 81 | 93 | basil ganglia | 1.0 |
Model Information
Model Name: | re_bodypart_directions_pipeline |
Type: | pipeline |
Compatibility: | Healthcare NLP 4.4.4+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 1.7 GB |
Included Models
- DocumentAssembler
- SentenceDetector
- TokenizerModel
- PerceptronModel
- WordEmbeddingsModel
- MedicalNerModel
- NerConverter
- DependencyParserModel
- RelationExtractionModel