Pipeline to Detect Symptoms, Treatments and Other Entities in German

Description

This pretrained pipeline is built on the top of ner_healthcare model.

Predicted Entities

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_healthcare_pipeline", "de", "clinical/models")

text = '''Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt.'''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_healthcare_pipeline", "de", "clinical/models")

val text = "Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt."

val result = pipeline.fullAnnotate(text)
from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_healthcare_pipeline", "de", "clinical/models")

text = '''Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt.'''

result = pipeline.fullAnnotate(text)

Results

|    | ner_chunk         |   begin |   end | ner_label             |   confidence |
|---:|:------------------|--------:|------:|:----------------------|-------------:|
|  0 | Kleinzellige      |       4 |    15 | MEASUREMENT           |       0.6897 |
|  1 | Bronchialkarzinom |      17 |    33 | MEDICAL_CONDITION     |       0.8983 |
|  2 | Kleinzelliger     |      36 |    48 | MEDICAL_SPECIFICATION |       0.1777 |
|  3 | Lungenkrebs       |      50 |    60 | MEDICAL_CONDITION     |       0.9776 |
|  4 | SCLC              |      63 |    66 | MEDICAL_CONDITION     |       0.9626 |
|  5 | Hernia            |      73 |    78 | MEDICAL_CONDITION     |       0.8177 |
|  6 | femoralis         |      80 |    88 | LOCAL_SPECIFICATION   |       0.9119 |
|  7 | Akne              |      91 |    94 | MEDICAL_CONDITION     |       0.9995 |
|  8 | einseitig         |      97 |   105 | MEASUREMENT           |       0.909  |
|  9 | hochmalignes      |     112 |   123 | MEDICAL_CONDITION     |       0.6778 |
| 10 | bronchogenes      |     125 |   136 | BODY_PART             |       0.621  |
| 11 | Karzinom          |     138 |   145 | MEDICAL_CONDITION     |       0.8118 |
| 12 | Lunge             |     179 |   183 | BODY_PART             |       0.9985 |
| 13 | Hauptbronchus     |     195 |   207 | BODY_PART             |       0.9864 |
| 14 | mittlere          |     223 |   230 | MEASUREMENT           |       0.9651 |
| 15 | Prävalenz         |     232 |   240 | MEDICAL_CONDITION     |       0.9833 |

Model Information

Model Name: ner_healthcare_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: de
Size: 1.3 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel