Pipeline to Extraction of biomarker information

Description

This pretrained pipeline is built on the top of ner_biomarker model.

Predicted Entities

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_biomarker_pipeline", "en", "clinical/models")

text = '''Here , we report the first case of an intraductal tubulopapillary neoplasm of the pancreas with clear cell morphology . Immunohistochemistry revealed positivity for Pan-CK , CK7 , CK8/18 , MUC1 , MUC6 , carbonic anhydrase IX , CD10 , EMA , β-catenin and e-cadherin '''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_biomarker_pipeline", "en", "clinical/models")

val text = "Here , we report the first case of an intraductal tubulopapillary neoplasm of the pancreas with clear cell morphology . Immunohistochemistry revealed positivity for Pan-CK , CK7 , CK8/18 , MUC1 , MUC6 , carbonic anhydrase IX , CD10 , EMA , β-catenin and e-cadherin "

val result = pipeline.fullAnnotate(text)
import nlu
nlu.load("en.med_ner.biomarker.pipeline").predict("""Here , we report the first case of an intraductal tubulopapillary neoplasm of the pancreas with clear cell morphology . Immunohistochemistry revealed positivity for Pan-CK , CK7 , CK8/18 , MUC1 , MUC6 , carbonic anhydrase IX , CD10 , EMA , β-catenin and e-cadherin """)

Results

|    | ner_chunks               |   begin |   end | ner_label             |   confidence |
|---:|:-------------------------|--------:|------:|:----------------------|-------------:|
|  0 | intraductal              |      38 |    48 | CancerModifier        |     0.9998   |
|  1 | tubulopapillary          |      50 |    64 | CancerModifier        |     0.9995   |
|  2 | neoplasm of the pancreas |      66 |    89 | CancerDx              |     0.7239   |
|  3 | clear cell               |      96 |   105 | CancerModifier        |     0.96745  |
|  4 | Immunohistochemistry     |     120 |   139 | Test                  |     0.9768   |
|  5 | positivity               |     150 |   159 | Biomarker_Measurement |     0.8704   |
|  6 | Pan-CK                   |     165 |   170 | Biomarker             |     0.998    |
|  7 | CK7                      |     174 |   176 | Biomarker             |     0.9977   |
|  8 | CK8/18                   |     180 |   185 | Biomarker             |     0.9988   |
|  9 | MUC1                     |     189 |   192 | Biomarker             |     0.9965   |
| 10 | MUC6                     |     196 |   199 | Biomarker             |     0.9974   |
| 11 | carbonic anhydrase IX    |     203 |   223 | Biomarker             |     0.814033 |
| 12 | CD10                     |     227 |   230 | Biomarker             |     0.9975   |
| 13 | EMA                      |     234 |   236 | Biomarker             |     0.9985   |
| 14 | β-catenin                |     240 |   248 | Biomarker             |     0.9948   |
| 15 | e-cadherin               |     254 |   263 | Biomarker             |     0.9952   |

Model Information

Model Name: ner_biomarker_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel